Skip to content

Commit

Permalink
feat(admin game init): add genetic values visualisation
Browse files Browse the repository at this point in the history
For that I had to refactor how the genetic values are generated.
(cf. discussion on #37)

I used a simulation approach where I simulate the genotypes and
marker effects and then calculate the genetic values.

This is not the best in my opinion since the simulation of the genotypes
is a bit slow (~3s), fortunately the genotypes are simulated only once
(when the "game initialisation" windows apprears) as this simulation do
not depends an any parameter for now.

However, the marker effects simulation and genetic values calculation
are done every time `sigma_a2` or the pleiotropy parameters change.
This calculation takes a bit of time and the plots update is not 100%
smooth but it is acceptable (on my hardware).
  • Loading branch information
juliendiot42 committed Jul 30, 2024
1 parent fe8a2f2 commit bb3314d
Show file tree
Hide file tree
Showing 3 changed files with 410 additions and 19 deletions.
214 changes: 196 additions & 18 deletions src/fun/module_gameInit_params.R
Original file line number Diff line number Diff line change
Expand Up @@ -437,51 +437,124 @@ gameInit_traits_ui <- function(id) {
)
),
plotlyOutput(ns("pheno_plot"), width = "100%"),
plotlyOutput(ns("genetic_values_plot"), width = "100%"),
tags$blockquote(style = "font-weight: normal; font-size: inherit; font-style: italic;",
"Note: The graphs above show an example of what the phenotypic values of",
"Note: The graphs above show an examples of what the phenotypic/genetic values of",
"the initial population will look like. The actual values",
"generated durring the game initialisation will have a similar",
"structure but will be different."
)

)
)
)
)
)
}

quick_pheno_simul <- function(mu, min, cv_g, h2, seed = 1993) {
quick_pheno_simul <- function(mu, sig_p, sig, sig_y, g0, seed = 1993) {

saved_seed <- .Random.seed
saved_seed <- .GlobalEnv$.Random.seed
set.seed(seed)
n_inds <- 100
n_inds <- length(g0)
n_years <- 5
first_year <- 1

sig_p <- calc_sigma_p2(mu, min)
sig_a <- calc_sigma_a2(cv_g, mu)
sig <- calc_sigma2(h2, sig_a)
sig_y <- calc_sigma_y2(sig_p, sig_a, sig)

df <- data.frame(
i = seq(1, n_inds),
g = rnorm(n_inds, 0, sqrt(sig_a))
g = g0
)

df <- do.call(rbind, lapply(seq(first_year, first_year + n_years), function(year) {
y_eff <- rnorm(1, 0, sqrt(sig_y))
y_effs <- rnorm(n_years, 0, sqrt(sig_y))

df <- do.call(rbind, lapply(seq_along(y_effs), function(year) {
y_eff <- y_effs[year]
df$year <- year
df$year_eff <- y_eff
df$pheno <- mu + df$g + y_eff + rnorm(n_inds, 0, sqrt(sig))
df
}))
df$year <- as.character(df$year)

set.seed(saved_seed)
.GlobalEnv$.Random.seed <- saved_seed

return(df)
}

quick_afs_simul <- function(n_marker_sim = 15000, shape1 = 0.5, shape2 = 0.5, seed = 42) {
saved_seed <- .GlobalEnv$.Random.seed
set.seed(seed)
n_marker_sim <- 15000
sim.afs <- rbeta(n_marker_sim, shape1, shape2)
.GlobalEnv$.Random.seed <- saved_seed
sim.afs
}

quick_geno_simul <- function(afs, n_inds = 1000, seed = 43) {
saved_seed <- .GlobalEnv$.Random.seed
set.seed(seed)
geno_centered <- sapply(afs, function(af) {
n <- round(n_inds * af)
sample(c(rep(2 - 2 * af, n), rep(-2 * af, n_inds - n)))
})
.GlobalEnv$.Random.seed <- saved_seed
geno_centered
}

quick_g0_simul <- function(T1_sig_a2,
T2_sig_a2,
afs,
prop_pleio,
cor_pleio,
geno,
seed = 44) {

if (!is.null(valid_variance(T1_sig_a2))
|| !is.null(valid_variance(T2_sig_a2))) {
return(NULL)
}
saved_seed <- .GlobalEnv$.Random.seed
set.seed(seed)
sigma.beta2 <- c(T1_sig_a2, T2_sig_a2) / (2 * sum(afs * (1 - afs)))

n_snp <- length(afs)
n_pleio <- round(n_snp * prop_pleio)
n_non_pleio <- n_snp - n_pleio

Sigma.beta.nopleio <- matrix(c(sigma.beta2[1], 0,
0, sigma.beta2[2]),
nrow = 2, ncol = 2)
cov.pleio <- cor_pleio * sqrt(sigma.beta2[1] * sigma.beta2[2])
Sigma.beta.pleio <- matrix(c(sigma.beta2[1], cov.pleio,
cov.pleio, sigma.beta2[2]),
nrow = 2, ncol = 2)

# I don't use MASS::mvrnorm and use a "manual approach" here so that the
# generated values remain the same more or less the covariance structure
# whatever the provided parameters. This will help the visualisation as
# the cloud point will be deformed.
base_random_values <- matrix(rnorm(n_snp * 2), 2)

if (n_non_pleio != 0) {
R_nopleio <- chol(Sigma.beta.nopleio)
beta_nopleio <- t(R_nopleio) %*% base_random_values[, 1:n_non_pleio]
} else {
beta_nopleio <- c()
}

if (n_pleio != 0) {
R_pleio <- chol(Sigma.beta.pleio)
beta_pleio <- t(R_pleio) %*% base_random_values[, (n_non_pleio+1):n_snp]
} else {
beta_pleio <- c()
}

beta <- t(cbind(beta_nopleio, beta_pleio))

.GlobalEnv$.Random.seed <- saved_seed
geno %*% beta
}



gameInit_traits_server <- function(id, iv) {
moduleServer(id, function(input, output, session) {
Expand Down Expand Up @@ -683,10 +756,34 @@ gameInit_traits_server <- function(id, iv) {
output$T2_sig_y2 <- renderText({signif(T2_sig_y2(), 6)})


afs_sim <- reactive({
quick_afs_simul(n_marker_sim = 15000, seed = 42)
})

geno_sim <- reactive({
quick_geno_simul(afs = afs_sim(), n_inds = 1000, seed = 43)
})

g0_sim <- reactive({
quick_g0_simul(
T1_sig_a2 = T1_sig_a2(),
T2_sig_a2 = T2_sig_a2(),
afs = afs_sim(),
prop_pleio = input$prop_pleio,
cor_pleio = input$cor_pleio,
geno = geno_sim(),
seed = 44
)
})

output$pheno_plot <- renderPlotly({
colors_T1 <- c("#1f77b4", "#ff7f0e")
colors_T2 <- c("#2ca02c", "#e12a2a")
if (!pheno_params_validator_T1$is_valid()) {
if (!pheno_params_validator_T1$is_valid()
|| !pheno_params_validator_pleio$is_valid()
|| !is.null(valid_variance(T1_sig_a2()))
|| !is.null(valid_variance(T2_sig_a2()))
) {
fig_T1 <- plot_ly(type = "box") %>%
add_annotations(
x=0.5, y=0.5, xref = "paper", yref = "paper",
Expand All @@ -700,7 +797,12 @@ gameInit_traits_server <- function(id, iv) {
T1_cv_g <- input$t1_cv_g
T1_h2 <- input$t1_h2

data_t1 <- quick_pheno_simul(T1_mu, T1_min, T1_cv_g, T1_h2, seed = 1993)
data_t1 <- quick_pheno_simul(T1_mu,
sig_p = T1_sig_p2(),
sig = T1_sig2(),
sig_y = T1_sig_y2(),
g0 = g0_sim()[,1],
seed = 1993)

fig_T1 <- plot_ly(
data_t1,
Expand All @@ -722,7 +824,11 @@ gameInit_traits_server <- function(id, iv) {
yaxis = list(title = "Phenotypes Trait 1")
)

if (!pheno_params_validator_T2$is_valid()) {
if (!pheno_params_validator_T2$is_valid()
|| !pheno_params_validator_pleio$is_valid()
|| !is.null(valid_variance(T1_sig_a2()))
|| !is.null(valid_variance(T2_sig_a2()))
) {
fig_T2 <- plot_ly(type = "box") %>%
add_annotations(
x=0.5, y=0.5, xref = "paper", yref = "paper",
Expand All @@ -736,7 +842,12 @@ gameInit_traits_server <- function(id, iv) {
T2_cv_g <- input$t2_cv_g
T2_h2 <- input$t2_h2

data_t2 <- quick_pheno_simul(T2_mu, T2_min, T2_cv_g, T2_h2, seed = 42)
data_t2 <- quick_pheno_simul(T2_mu,
sig_p = T2_sig_p2(),
sig = T2_sig2(),
sig_y = T2_sig_y2(),
g0 = g0_sim()[,2],
seed = 42)


fig_T2 <- plot_ly(
Expand Down Expand Up @@ -767,6 +878,73 @@ gameInit_traits_server <- function(id, iv) {
return(fig)
})

output$genetic_values_plot <- renderPlotly({

valid <- (
pheno_params_validator_pleio$is_valid()
&& is.null(valid_variance(T1_sig_a2()))
&& is.null(valid_variance(T2_sig_a2()))
)

if (!valid) {
return(plot_ly(type = "scatter", mode = "markers") %>%
add_annotations(
x=0.5, y=0.5, xref = "paper", yref = "paper",
text = "Error with provided parameters",
xanchor = 'center',
showarrow = FALSE
))
}

dta <- as.data.frame(g0_sim())
colnames(dta) <- c("G_T1", "G_T2")

lin_mod <- lm("G_T2 ~ G_T1", data = dta)
cor_pearson <- signif(cor(dta$G_T1, dta$G_T2, method = "pearson"), 3)
cor_spearman <- signif(cor(dta$G_T1, dta$G_T2, method = "spearman"), 3)

plot_ly(type = "scatter",
mode = "markers",
data = dta,
x = ~G_T1,
y = ~G_T2,
showlegend = FALSE,
hoverinfo = "text",
text = apply(dta, 1, function(l) {
paste(names(l), ":", l, collapse = "\n")
})
) %>% add_lines(
inherit = FALSE,
x = ~G_T1,
y = fitted(lin_mod),
showlegend = FALSE,
name = paste("linear reggression",
paste0("y = ",
signif(lin_mod$coefficients[1], 3),
" + ",
signif(lin_mod$coefficients[2], 3),
"x"),
paste0("r^2 = ", signif(summary(lin_mod)$r.squared, 3)),
sep = "\n")
) %>% add_annotations(
x = 0.1, y = 0.9, xref = "paper", yref = "paper",
textposition = 'top left',
text = paste0("Correlation pearson = ", cor_pearson,
"\nCorrelation spearman = ", cor_spearman),
xanchor = 'center',
showarrow = FALSE
) %>% layout(
xaxis = list(title = "Trait 1"),
yaxis = list(title = "Trait 2"),
legend = list(x = 0.9, y = 0.9),
title = "Example of genetic values\nfor the initial population"
)


})



return(
list(
value = reactive({
Expand Down
2 changes: 1 addition & 1 deletion src/ui/ui_admin_loggedIn.R
Original file line number Diff line number Diff line change
Expand Up @@ -395,7 +395,7 @@ game_initialisation_tab_content <- div(
gameInit_traits_ui("gameInit_geno_pheno_simul"),
gameInit_costs_ui("gameInit_costs")
),
uiOutput("initialisation_button")
withSpinner(uiOutput("initialisation_button"))
)
)

Expand Down
Loading

0 comments on commit bb3314d

Please sign in to comment.