-
Notifications
You must be signed in to change notification settings - Fork 35
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
"Player 0x4cfde142ae1fc23fa2b052fd7acd5b7731de73f6 submitted 'quadkp_…
…improved' for challenge knapsack"
- Loading branch information
0x4cfde142ae1fc23fa2b052fd7acd5b7731de73f6
committed
Oct 24, 2024
1 parent
d6fa4db
commit a001987
Showing
7 changed files
with
946 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
188 changes: 188 additions & 0 deletions
188
tig-algorithms/src/knapsack/quadkp_improved/benchmarker_outbound.rs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
/*! | ||
Copyright 2024 Rootz | ||
Licensed under the TIG Benchmarker Outbound Game License v1.0 (the "License"); you | ||
may not use this file except in compliance with the License. You may obtain a copy | ||
of the License at | ||
https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses | ||
Unless required by applicable law or agreed to in writing, software distributed | ||
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific | ||
language governing permissions and limitations under the License. | ||
*/ | ||
|
||
// TIG's UI uses the pattern `tig_challenges::<challenge_name>` to automatically detect your algorithm's challenge | ||
use anyhow::Result; | ||
use rand::{SeedableRng, Rng, rngs::StdRng}; | ||
use tig_challenges::knapsack::{Challenge, Solution}; | ||
|
||
pub fn solve_challenge(challenge: &Challenge) -> Result<Option<Solution>> { | ||
let vertex_count = challenge.weights.len(); | ||
|
||
let mut item_scores: Vec<(usize, f32)> = (0..vertex_count) | ||
.map(|index| { | ||
let interaction_sum: i32 = challenge.interaction_values[index].iter().sum(); | ||
let secondary_score = challenge.values[index] as f32 / challenge.weights[index] as f32; | ||
let combined_score = (challenge.values[index] as f32 * 0.75 + interaction_sum as f32 * 0.15 + secondary_score * 0.1) | ||
/ challenge.weights[index] as f32; | ||
(index, combined_score) | ||
}) | ||
.collect(); | ||
|
||
item_scores.sort_unstable_by(|a, b| b.1.partial_cmp(&a.1).unwrap()); | ||
|
||
let mut selected_items = Vec::with_capacity(vertex_count); | ||
let mut unselected_items = Vec::with_capacity(vertex_count); | ||
let mut current_weight = 0; | ||
let mut current_value = 0; | ||
|
||
for &(index, _) in &item_scores { | ||
if current_weight + challenge.weights[index] <= challenge.max_weight { | ||
current_weight += challenge.weights[index]; | ||
current_value += challenge.values[index] as i32; | ||
|
||
for &selected in &selected_items { | ||
current_value += challenge.interaction_values[index][selected]; | ||
} | ||
selected_items.push(index); | ||
} else { | ||
unselected_items.push(index); | ||
} | ||
} | ||
|
||
let mut mutation_rates = vec![0; vertex_count]; | ||
for index in 0..vertex_count { | ||
mutation_rates[index] = challenge.values[index] as i32; | ||
for &selected in &selected_items { | ||
mutation_rates[index] += challenge.interaction_values[index][selected]; | ||
} | ||
} | ||
|
||
let max_generations = 150; | ||
let mut cooling_schedule = vec![0; vertex_count]; | ||
let mut rng = StdRng::seed_from_u64(challenge.seed[0] as u64); | ||
|
||
for generation in 0..max_generations { | ||
let mut best_gain = 0; | ||
let mut best_swap = None; | ||
|
||
for (u_index, &mutant) in unselected_items.iter().enumerate() { | ||
if cooling_schedule[mutant] > 0 { | ||
continue; | ||
} | ||
|
||
let mutant_fitness = mutation_rates[mutant]; | ||
let extra_weight = challenge.weights[mutant] as i32 - (challenge.max_weight as i32 - current_weight as i32); | ||
|
||
if mutant_fitness < 0 { | ||
continue; | ||
} | ||
|
||
for (c_index, &selected) in selected_items.iter().enumerate() { | ||
if cooling_schedule[selected] > 0 { | ||
continue; | ||
} | ||
|
||
if extra_weight > 0 && (challenge.weights[selected] as i32) < extra_weight { | ||
continue; | ||
} | ||
|
||
let interaction_penalty = (challenge.interaction_values[mutant][selected] as f32 * 0.3) as i32; | ||
let fitness_gain = mutant_fitness - mutation_rates[selected] - interaction_penalty; | ||
|
||
if fitness_gain > best_gain { | ||
best_gain = fitness_gain; | ||
best_swap = Some((u_index, c_index)); | ||
} | ||
} | ||
} | ||
|
||
if let Some((u_index, c_index)) = best_swap { | ||
let added_item = unselected_items[u_index]; | ||
let removed_item = selected_items[c_index]; | ||
|
||
selected_items.swap_remove(c_index); | ||
unselected_items.swap_remove(u_index); | ||
selected_items.push(added_item); | ||
unselected_items.push(removed_item); | ||
|
||
current_value += best_gain; | ||
current_weight = current_weight + challenge.weights[added_item] - challenge.weights[removed_item]; | ||
|
||
if current_weight > challenge.max_weight { | ||
continue; | ||
} | ||
|
||
for index in 0..vertex_count { | ||
mutation_rates[index] += challenge.interaction_values[index][added_item] | ||
- challenge.interaction_values[index][removed_item]; | ||
} | ||
|
||
cooling_schedule[added_item] = 3; | ||
cooling_schedule[removed_item] = 3; | ||
} | ||
|
||
if current_value as u32 >= challenge.min_value { | ||
return Ok(Some(Solution { items: selected_items })); | ||
} | ||
|
||
for cooling_rate in cooling_schedule.iter_mut() { | ||
*cooling_rate = if *cooling_rate > 0 { *cooling_rate - 1 } else { 0 }; | ||
} | ||
|
||
if current_value as u32 > (challenge.min_value * 9 / 10) { | ||
let high_potential_items: Vec<usize> = unselected_items | ||
.iter() | ||
.filter(|&&i| challenge.values[i] as i32 > (challenge.min_value as i32 / 4)) | ||
.copied() | ||
.collect(); | ||
|
||
for &item in high_potential_items.iter().take(2) { | ||
if current_weight + challenge.weights[item] <= challenge.max_weight { | ||
selected_items.push(item); | ||
unselected_items.retain(|&x| x != item); | ||
current_weight += challenge.weights[item]; | ||
current_value += challenge.values[item] as i32; | ||
|
||
for &selected in &selected_items { | ||
if selected != item { | ||
current_value += challenge.interaction_values[item][selected]; | ||
} | ||
} | ||
|
||
if current_value as u32 >= challenge.min_value { | ||
return Ok(Some(Solution { items: selected_items })); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
if current_value as u32 >= challenge.min_value && current_weight <= challenge.max_weight { | ||
Ok(Some(Solution { items: selected_items })) | ||
} else { | ||
Ok(None) | ||
} | ||
} | ||
|
||
#[cfg(feature = "cuda")] | ||
mod gpu_optimisation { | ||
use super::*; | ||
use cudarc::driver::*; | ||
use std::{collections::HashMap, sync::Arc}; | ||
use tig_challenges::CudaKernel; | ||
|
||
pub const KERNEL: Option<CudaKernel> = None; | ||
|
||
pub fn cuda_solve_challenge( | ||
challenge: &Challenge, | ||
dev: &Arc<CudaDevice>, | ||
mut funcs: HashMap<&'static str, CudaFunction>, | ||
) -> anyhow::Result<Option<Solution>> { | ||
solve_challenge(challenge) | ||
} | ||
} | ||
#[cfg(feature = "cuda")] | ||
pub use gpu_optimisation::{cuda_solve_challenge, KERNEL}; |
188 changes: 188 additions & 0 deletions
188
tig-algorithms/src/knapsack/quadkp_improved/commercial.rs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
/*! | ||
Copyright 2024 Rootz | ||
Licensed under the TIG Commercial License v1.0 (the "License"); you | ||
may not use this file except in compliance with the License. You may obtain a copy | ||
of the License at | ||
https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses | ||
Unless required by applicable law or agreed to in writing, software distributed | ||
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific | ||
language governing permissions and limitations under the License. | ||
*/ | ||
|
||
// TIG's UI uses the pattern `tig_challenges::<challenge_name>` to automatically detect your algorithm's challenge | ||
use anyhow::Result; | ||
use rand::{SeedableRng, Rng, rngs::StdRng}; | ||
use tig_challenges::knapsack::{Challenge, Solution}; | ||
|
||
pub fn solve_challenge(challenge: &Challenge) -> Result<Option<Solution>> { | ||
let vertex_count = challenge.weights.len(); | ||
|
||
let mut item_scores: Vec<(usize, f32)> = (0..vertex_count) | ||
.map(|index| { | ||
let interaction_sum: i32 = challenge.interaction_values[index].iter().sum(); | ||
let secondary_score = challenge.values[index] as f32 / challenge.weights[index] as f32; | ||
let combined_score = (challenge.values[index] as f32 * 0.75 + interaction_sum as f32 * 0.15 + secondary_score * 0.1) | ||
/ challenge.weights[index] as f32; | ||
(index, combined_score) | ||
}) | ||
.collect(); | ||
|
||
item_scores.sort_unstable_by(|a, b| b.1.partial_cmp(&a.1).unwrap()); | ||
|
||
let mut selected_items = Vec::with_capacity(vertex_count); | ||
let mut unselected_items = Vec::with_capacity(vertex_count); | ||
let mut current_weight = 0; | ||
let mut current_value = 0; | ||
|
||
for &(index, _) in &item_scores { | ||
if current_weight + challenge.weights[index] <= challenge.max_weight { | ||
current_weight += challenge.weights[index]; | ||
current_value += challenge.values[index] as i32; | ||
|
||
for &selected in &selected_items { | ||
current_value += challenge.interaction_values[index][selected]; | ||
} | ||
selected_items.push(index); | ||
} else { | ||
unselected_items.push(index); | ||
} | ||
} | ||
|
||
let mut mutation_rates = vec![0; vertex_count]; | ||
for index in 0..vertex_count { | ||
mutation_rates[index] = challenge.values[index] as i32; | ||
for &selected in &selected_items { | ||
mutation_rates[index] += challenge.interaction_values[index][selected]; | ||
} | ||
} | ||
|
||
let max_generations = 150; | ||
let mut cooling_schedule = vec![0; vertex_count]; | ||
let mut rng = StdRng::seed_from_u64(challenge.seed[0] as u64); | ||
|
||
for generation in 0..max_generations { | ||
let mut best_gain = 0; | ||
let mut best_swap = None; | ||
|
||
for (u_index, &mutant) in unselected_items.iter().enumerate() { | ||
if cooling_schedule[mutant] > 0 { | ||
continue; | ||
} | ||
|
||
let mutant_fitness = mutation_rates[mutant]; | ||
let extra_weight = challenge.weights[mutant] as i32 - (challenge.max_weight as i32 - current_weight as i32); | ||
|
||
if mutant_fitness < 0 { | ||
continue; | ||
} | ||
|
||
for (c_index, &selected) in selected_items.iter().enumerate() { | ||
if cooling_schedule[selected] > 0 { | ||
continue; | ||
} | ||
|
||
if extra_weight > 0 && (challenge.weights[selected] as i32) < extra_weight { | ||
continue; | ||
} | ||
|
||
let interaction_penalty = (challenge.interaction_values[mutant][selected] as f32 * 0.3) as i32; | ||
let fitness_gain = mutant_fitness - mutation_rates[selected] - interaction_penalty; | ||
|
||
if fitness_gain > best_gain { | ||
best_gain = fitness_gain; | ||
best_swap = Some((u_index, c_index)); | ||
} | ||
} | ||
} | ||
|
||
if let Some((u_index, c_index)) = best_swap { | ||
let added_item = unselected_items[u_index]; | ||
let removed_item = selected_items[c_index]; | ||
|
||
selected_items.swap_remove(c_index); | ||
unselected_items.swap_remove(u_index); | ||
selected_items.push(added_item); | ||
unselected_items.push(removed_item); | ||
|
||
current_value += best_gain; | ||
current_weight = current_weight + challenge.weights[added_item] - challenge.weights[removed_item]; | ||
|
||
if current_weight > challenge.max_weight { | ||
continue; | ||
} | ||
|
||
for index in 0..vertex_count { | ||
mutation_rates[index] += challenge.interaction_values[index][added_item] | ||
- challenge.interaction_values[index][removed_item]; | ||
} | ||
|
||
cooling_schedule[added_item] = 3; | ||
cooling_schedule[removed_item] = 3; | ||
} | ||
|
||
if current_value as u32 >= challenge.min_value { | ||
return Ok(Some(Solution { items: selected_items })); | ||
} | ||
|
||
for cooling_rate in cooling_schedule.iter_mut() { | ||
*cooling_rate = if *cooling_rate > 0 { *cooling_rate - 1 } else { 0 }; | ||
} | ||
|
||
if current_value as u32 > (challenge.min_value * 9 / 10) { | ||
let high_potential_items: Vec<usize> = unselected_items | ||
.iter() | ||
.filter(|&&i| challenge.values[i] as i32 > (challenge.min_value as i32 / 4)) | ||
.copied() | ||
.collect(); | ||
|
||
for &item in high_potential_items.iter().take(2) { | ||
if current_weight + challenge.weights[item] <= challenge.max_weight { | ||
selected_items.push(item); | ||
unselected_items.retain(|&x| x != item); | ||
current_weight += challenge.weights[item]; | ||
current_value += challenge.values[item] as i32; | ||
|
||
for &selected in &selected_items { | ||
if selected != item { | ||
current_value += challenge.interaction_values[item][selected]; | ||
} | ||
} | ||
|
||
if current_value as u32 >= challenge.min_value { | ||
return Ok(Some(Solution { items: selected_items })); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
if current_value as u32 >= challenge.min_value && current_weight <= challenge.max_weight { | ||
Ok(Some(Solution { items: selected_items })) | ||
} else { | ||
Ok(None) | ||
} | ||
} | ||
|
||
#[cfg(feature = "cuda")] | ||
mod gpu_optimisation { | ||
use super::*; | ||
use cudarc::driver::*; | ||
use std::{collections::HashMap, sync::Arc}; | ||
use tig_challenges::CudaKernel; | ||
|
||
pub const KERNEL: Option<CudaKernel> = None; | ||
|
||
pub fn cuda_solve_challenge( | ||
challenge: &Challenge, | ||
dev: &Arc<CudaDevice>, | ||
mut funcs: HashMap<&'static str, CudaFunction>, | ||
) -> anyhow::Result<Option<Solution>> { | ||
solve_challenge(challenge) | ||
} | ||
} | ||
#[cfg(feature = "cuda")] | ||
pub use gpu_optimisation::{cuda_solve_challenge, KERNEL}; |
Oops, something went wrong.