Skip to content

Commit

Permalink
Merge remote-tracking branch 'public/vector_search/invector_hybrid'
Browse files Browse the repository at this point in the history
  • Loading branch information
FiveMovesAhead committed Dec 22, 2024
2 parents ba735b2 + 0b48e4d commit 37ec5c2
Show file tree
Hide file tree
Showing 8 changed files with 1,981 additions and 1 deletion.
Original file line number Diff line number Diff line change
@@ -0,0 +1,395 @@
/*!
Copyright 2024 syebastian
Licensed under the TIG Benchmarker Outbound Game License v1.0 (the "License"); you
may not use this file except in compliance with the License. You may obtain a copy
of the License at
https://github.com/tig-foundation/tig-monorepo/tree/main/docs/licenses
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.
*/


use anyhow::Ok;
use tig_challenges::vector_search::*;
use std::cmp::Ordering;
use std::collections::BinaryHeap;

struct KDNode<'a> {
point: &'a [f32],
left: Option<Box<KDNode<'a>>>,
right: Option<Box<KDNode<'a>>>,
index: usize,
}

impl<'a> KDNode<'a> {
fn new(point: &'a [f32], index: usize) -> Self {
KDNode {
point,
left: None,
right: None,
index,
}
}
}
fn quickselect_by<F>(arr: &mut [(&[f32], usize)], k: usize, compare: &F)
where
F: Fn(&(&[f32], usize), &(&[f32], usize)) -> Ordering,
{
if arr.len() <= 1 {
return;
}

let pivot_index = partition(arr, compare);
if k < pivot_index {
quickselect_by(&mut arr[..pivot_index], k, compare);
} else if k > pivot_index {
quickselect_by(&mut arr[pivot_index + 1..], k - pivot_index - 1, compare);
}
}

fn partition<F>(arr: &mut [(&[f32], usize)], compare: &F) -> usize
where
F: Fn(&(&[f32], usize), &(&[f32], usize)) -> Ordering,
{
let pivot_index = arr.len() >> 1;
arr.swap(pivot_index, arr.len() - 1);

let mut store_index = 0;
for i in 0..arr.len() - 1 {
if compare(&arr[i], &arr[arr.len() - 1]) == Ordering::Less {
arr.swap(i, store_index);
store_index += 1;
}
}
arr.swap(store_index, arr.len() - 1);
store_index
}

fn build_kd_tree<'a>(points: &mut [(&'a [f32], usize)]) -> Option<Box<KDNode<'a>>> {
if points.is_empty() {
return None;
}

const NUM_DIMENSIONS: usize = 250;
let mut stack: Vec<(usize, usize, usize, Option<*mut KDNode<'a>>, bool)> = Vec::new();
let mut root: Option<Box<KDNode<'a>>> = None;

stack.push((0, points.len(), 0, None, false));

while let Some((start, end, depth, parent_ptr, is_left)) = stack.pop() {
if start >= end {
continue;
}

let axis = depth % NUM_DIMENSIONS;
let median = (start + end) / 2;
quickselect_by(&mut points[start..end], median - start, &|a, b| {
a.0[axis].partial_cmp(&b.0[axis]).unwrap()
});

let (median_point, median_index) = points[median];
let mut new_node = Box::new(KDNode::new(median_point, median_index));
let new_node_ptr: *mut KDNode = &mut *new_node;

if let Some(parent_ptr) = parent_ptr {
unsafe {
if is_left {
(*parent_ptr).left = Some(new_node);
} else {
(*parent_ptr).right = Some(new_node);
}
}
} else {
root = Some(new_node);
}

stack.push((median + 1, end, depth + 1, Some(new_node_ptr), false));
stack.push((start, median, depth + 1, Some(new_node_ptr), true));
}

root
}

#[inline(always)]
fn squared_euclidean_distance(a: &[f32], b: &[f32]) -> f32 {
let mut sum = 0.0;
let mut i = 0;
let len = a.len();

if a.len() != b.len() || a.len() < 8 {
return f32::MAX;
}

while i + 7 < len {
unsafe {
let diff0 = *a.get_unchecked(i) - *b.get_unchecked(i);
let diff1 = *a.get_unchecked(i + 1) - *b.get_unchecked(i + 1);
let diff2 = *a.get_unchecked(i + 2) - *b.get_unchecked(i + 2);
let diff3 = *a.get_unchecked(i + 3) - *b.get_unchecked(i + 3);
let diff4 = *a.get_unchecked(i + 4) - *b.get_unchecked(i + 4);
let diff5 = *a.get_unchecked(i + 5) - *b.get_unchecked(i + 5);
let diff6 = *a.get_unchecked(i + 6) - *b.get_unchecked(i + 6);
let diff7 = *a.get_unchecked(i + 7) - *b.get_unchecked(i + 7);

sum += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3 +
diff4 * diff4 + diff5 * diff5 + diff6 * diff6 + diff7 * diff7;
}

i += 8;
}

while i < len {
unsafe {
let diff = *a.get_unchecked(i) - *b.get_unchecked(i);
sum += diff * diff;
}
i += 1;
}
sum
}

#[inline(always)]
fn early_stopping_distance(a: &[f32], b: &[f32], current_min: f32) -> f32 {
let mut sum = 0.0;
let mut i = 0;
let len = a.len();

if a.len() != b.len() || a.len() < 8 {
return f32::MAX;
}

while i + 7 < len {
unsafe {
let diff0 = *a.get_unchecked(i) - *b.get_unchecked(i);
let diff1 = *a.get_unchecked(i + 1) - *b.get_unchecked(i + 1);
let diff2 = *a.get_unchecked(i + 2) - *b.get_unchecked(i + 2);
let diff3 = *a.get_unchecked(i + 3) - *b.get_unchecked(i + 3);
let diff4 = *a.get_unchecked(i + 4) - *b.get_unchecked(i + 4);
let diff5 = *a.get_unchecked(i + 5) - *b.get_unchecked(i + 5);
let diff6 = *a.get_unchecked(i + 6) - *b.get_unchecked(i + 6);
let diff7 = *a.get_unchecked(i + 7) - *b.get_unchecked(i + 7);

sum += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3 +
diff4 * diff4 + diff5 * diff5 + diff6 * diff6 + diff7 * diff7;
}

if sum > current_min {
return f32::MAX;
}

i += 8;
}

while i < len {
unsafe {
let diff = *a.get_unchecked(i) - *b.get_unchecked(i);
sum += diff * diff;
}
i += 1;
}
sum
}

fn nearest_neighbor_search<'a>(
root: &Option<Box<KDNode<'a>>>,
target: &[f32],
best: &mut (f32, Option<usize>),
) {
let num_dimensions = target.len();
let mut stack = Vec::with_capacity(64);

if let Some(node) = root {
stack.push((node.as_ref(), 0));
}

while let Some((node, depth)) = stack.pop() {
let axis = depth % num_dimensions;
let dist = early_stopping_distance(&node.point, target, best.0);

if dist < best.0 {
best.0 = dist;
best.1 = Some(node.index);
}

let diff = target[axis] - node.point[axis];
let sqr_diff = diff * diff;

let (nearer, farther) = if diff < 0.0 {
(&node.left, &node.right)
} else {
(&node.right, &node.left)
};

if let Some(nearer_node) = nearer {
stack.push((nearer_node.as_ref(), depth + 1));
}

if sqr_diff < best.0 {
if let Some(farther_node) = farther {
stack.push((farther_node.as_ref(), depth + 1));
}
}
}
}
fn calculate_mean_vector(vectors: &[&[f32]]) -> Vec<f32> {
let num_vectors = vectors.len();
let num_dimensions = 250;

let mut mean_vector = vec![0.0f64; num_dimensions];

for vector in vectors {
for i in 0..num_dimensions {
mean_vector[i] += vector[i] as f64;
}
}
for i in 0..num_dimensions {
mean_vector[i] /= num_vectors as f64;
}
mean_vector.into_iter().map(|x| x as f32).collect()
}

#[derive(Debug)]
struct FloatOrd(f32);

impl PartialEq for FloatOrd {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}

impl Eq for FloatOrd {}

impl PartialOrd for FloatOrd {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.0.partial_cmp(&other.0)
}
}

impl Ord for FloatOrd {
fn cmp(&self, other: &Self) -> Ordering {

self.partial_cmp(other).unwrap_or(Ordering::Equal)
}
}

fn filter_relevant_vectors<'a>(
database: &'a [Vec<f32>],
query_vectors: &[Vec<f32>],
k: usize,
) -> Vec<(f32, &'a [f32], usize)> {
let query_refs: Vec<&[f32]> = query_vectors.iter().map(|v| &v[..]).collect();
let mean_query_vector = calculate_mean_vector(&query_refs);

let mut heap: BinaryHeap<(FloatOrd, usize)> = BinaryHeap::with_capacity(k);

for (index, vector) in database.iter().enumerate() {
if heap.len() < k
{
let dist = squared_euclidean_distance(&mean_query_vector, vector);
let ord_dist = FloatOrd(dist);

heap.push((ord_dist, index));
} else if let Some(&(FloatOrd(top_dist), _)) = heap.peek()
{
let dist = early_stopping_distance(&mean_query_vector, vector, top_dist);
let ord_dist = FloatOrd(dist);
if dist < top_dist {
heap.pop();
heap.push((ord_dist, index));
}
}
}
heap.into_sorted_vec()
.into_iter()
.map(|(FloatOrd(dist), index)| (dist, &database[index][..], index))
.collect()
}

pub fn solve_challenge(challenge: &Challenge) -> anyhow::Result<Option<Solution>> {
let query_count = challenge.query_vectors.len();

let max_fuel = 2000000000.0;
let base_fuel = 760000000.0;
let alpha = 1700.0 * challenge.difficulty.num_queries as f64;

let m = ((max_fuel - base_fuel) / alpha) as usize;
let n = (m as f32 * 1.2) as usize;
let r = n - m;

let closest_vectors = filter_relevant_vectors(
&challenge.vector_database,
&challenge.query_vectors,
n,
);

let (m_slice, r_slice) = closest_vectors.split_at(m);
let m_vectors: Vec<_> = m_slice.to_vec();
let r_vectors: Vec<_> = r_slice.to_vec();

let mut kd_tree_vectors: Vec<(&[f32], usize)> = m_vectors.iter().map(|&(_, v, i)| (v, i)).collect();
let kd_tree = build_kd_tree(&mut kd_tree_vectors);

let mut best_indexes = Vec::with_capacity(query_count);
let mut distances = Vec::with_capacity(query_count);

for query in &challenge.query_vectors {
let mut best = (std::f32::MAX, None);
nearest_neighbor_search(&kd_tree, query, &mut best);

distances.push(best.0);
best_indexes.push(best.1.unwrap_or(0));
}

let brute_force_count = (query_count as f32 * 0.1) as usize;
let mut distance_indices: Vec<_> = distances.iter().enumerate().collect();
distance_indices.sort_unstable_by(|a, b| b.1.partial_cmp(a.1).unwrap());
let high_distance_indices: Vec<_> = distance_indices.into_iter()
.take(brute_force_count)
.map(|(index, _)| index)
.collect();

for &query_index in &high_distance_indices {
let query = &challenge.query_vectors[query_index];
let mut best = (distances[query_index], best_indexes[query_index]);

for &(_, vec, index) in &r_vectors {
let dist = squared_euclidean_distance(query, vec);
if dist < best.0 {
best = (dist, index);
}
}

best_indexes[query_index] = best.1;
}

Ok(Some(Solution {
indexes: best_indexes,
}))
}

#[cfg(feature = "cuda")]
mod gpu_optimisation {
use super::*;
use cudarc::driver::*;
use std::{collections::HashMap, sync::Arc};
use tig_challenges::CudaKernel;

// set KERNEL to None if algorithm only has a CPU implementation
pub const KERNEL: Option<CudaKernel> = None;

// Important! your GPU and CPU version of the algorithm should return the same result
pub fn cuda_solve_challenge(
challenge: &Challenge,
dev: &Arc<CudaDevice>,
mut funcs: HashMap<&'static str, CudaFunction>,
) -> anyhow::Result<Option<Solution>> {
solve_challenge(challenge)
}
}
#[cfg(feature = "cuda")]
pub use gpu_optimisation::{cuda_solve_challenge, KERNEL};
Loading

0 comments on commit 37ec5c2

Please sign in to comment.