-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvoxel_grid_omp.cpp
532 lines (494 loc) · 24 KB
/
voxel_grid_omp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
//
// Created by hk on 3/26/23.
//
#include "voxel_grid_omp.h"
#include "Eigen/src/Core/Matrix.h"
#include "pcl/impl/point_types.hpp"
#include <algorithm>
#include <boost/sort/spreadsort/integer_sort.hpp>
#include <cstddef>
#include <cstring>
#include <limits>
#include <pcl/filters/impl/voxel_grid.hpp>
#include <omp.h>
namespace{
/*
等同于cloud_point_index_idx
cloud_point_index_idx没有默认构造函数,会导致boost的integer_sort编译不通过
*/
struct VoxelIndex{
unsigned int idx;
unsigned int cloud_point_index;
VoxelIndex() = default;
VoxelIndex (unsigned int idx_, unsigned int cloud_point_index_) : idx (idx_), cloud_point_index (cloud_point_index_) {}
bool operator < (const VoxelIndex &p) const { return (idx < p.idx); }
};
const int kSampleStep = 100;
/*
为每个线程分配它所处理的voxel index的上下界.
输入:
- index_all_thread.size()个有序vector,表示之前各个线程产生的voxel索引
- 需要为thread_num个线程分配任务
输出: 每个线程的任务
*/
size_t AssignTask(const std::vector<std::shared_ptr<std::vector<int>>>& index_all_thread, int thread_num, std::vector<std::vector<std::pair<int, int>>>* tasks){
// 采样
std::vector<int> sampled_data;
size_t total = 0;
for(auto& index: index_all_thread){
total += index->size();
}
sampled_data.reserve(total/kSampleStep+index_all_thread.size()*2);
for(auto& index: index_all_thread){
size_t i=0;
for(; i<index->size(); i+=kSampleStep){
sampled_data.push_back((*index)[i]);
}
if(index->size()>0 && (index->size()-1)%kSampleStep>kSampleStep/2){
sampled_data.push_back(index->back());
}
}
// 确定每个进程分配voxel索引的上下界
std::sort(sampled_data.begin(), sampled_data.end());
tasks->resize(thread_num);
int pad_size = sampled_data.size()%thread_num;
int pivot_step = sampled_data.size()/thread_num;
for(int i=0; i<thread_num; ++i){
int start = pivot_step*i;
start += (i>pad_size?pad_size:i);
int pivot_start = sampled_data[start];
int pivot_end;
if(i+1<thread_num){
int end = pivot_step*(i+1);
end += (i+1>pad_size?pad_size:i+1);
pivot_end = sampled_data[end];
}
auto& cur_task = (*tasks)[i];
cur_task.resize(index_all_thread.size());
for(size_t j=0; j<cur_task.size(); ++j){
auto start_it = std::lower_bound(index_all_thread[j]->begin(), index_all_thread[j]->end(),pivot_start);
cur_task[j].first = int(start_it - index_all_thread[j]->begin());
if(i+1>=thread_num){
cur_task[j].second = index_all_thread[j]->size();
}else{
auto end_it = std::lower_bound(index_all_thread[j]->begin(), index_all_thread[j]->end(),pivot_end);
cur_task[j].second = int(end_it-index_all_thread[j]->begin());
}
}
}
return total;
}
}
void
pcl::VoxelGridOMP::setNumberOfThreads (unsigned int nr_threads)
{
if (nr_threads == 0)
#ifdef _OPENMP
threads_ = omp_get_num_procs();
#else
threads_ = 1;
#endif
else
threads_ = nr_threads;
printf("set number of threads: %d.\n", threads_);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void
pcl::VoxelGridOMP::applyFilter(PointCloud &output)
{
// TicToc t_bbox;
// Has the input dataset been set already?
if (!input_)
{
PCL_WARN ("[pcl::%s::applyFilter] No input dataset given!\n", getClassName ().c_str ());
output.width = output.height = 0;
output.points.clear ();
return;
}
// Copy the header (and thus the frame_id) + allocate enough space for points
output.height = 1; // downsampling breaks the organized structure
output.is_dense = true; // we filter out invalid points
Eigen::Vector4f min_p, max_p;
// Get the minimum and maximum dimensions
if (!filter_field_name_.empty ()) // If we don't want to process the entire cloud...
getMinMax3D<PointT> (input_, *indices_, filter_field_name_, static_cast<float> (filter_limit_min_), static_cast<float> (filter_limit_max_), min_p, max_p, filter_limit_negative_);
else {
// getMinMax3D<PointT>(*input_, *indices_, min_p, max_p);
getMinMax3DOMP(*input_, *indices_, min_p, max_p);
// printf("min max OMP cost: %fms\n", t_bbox.toc());
}
// Check that the leaf size is not too small, given the size of the data
int64_t dx = static_cast<int64_t>((max_p[0] - min_p[0]) * inverse_leaf_size_[0])+1;
int64_t dy = static_cast<int64_t>((max_p[1] - min_p[1]) * inverse_leaf_size_[1])+1;
int64_t dz = static_cast<int64_t>((max_p[2] - min_p[2]) * inverse_leaf_size_[2])+1;
if ((dx*dy*dz) > static_cast<int64_t>(std::numeric_limits<int32_t>::max()))
{
PCL_WARN("[pcl::%s::applyFilter] Leaf size is too small for the input dataset. Integer indices would overflow.", getClassName().c_str());
output = *input_;
return;
}
// Compute the minimum and maximum bounding box values
min_b_[0] = static_cast<int> (floor (min_p[0] * inverse_leaf_size_[0]));
max_b_[0] = static_cast<int> (floor (max_p[0] * inverse_leaf_size_[0]));
min_b_[1] = static_cast<int> (floor (min_p[1] * inverse_leaf_size_[1]));
max_b_[1] = static_cast<int> (floor (max_p[1] * inverse_leaf_size_[1]));
min_b_[2] = static_cast<int> (floor (min_p[2] * inverse_leaf_size_[2]));
max_b_[2] = static_cast<int> (floor (max_p[2] * inverse_leaf_size_[2]));
// Compute the number of divisions needed along all axis
div_b_ = max_b_ - min_b_ + Eigen::Vector4i::Ones (); // num of voxels in 3d space
div_b_[3] = 0;
// Set up the division multiplier
divb_mul_ = Eigen::Vector4i (1, div_b_[0], div_b_[0] * div_b_[1], 0);
// printf("bbox cost: %fms\n", t_bbox.toc());
int centroid_size = 4; // centroid dimension
if (downsample_all_data_) {
centroid_size = boost::mpl::size<FieldList>::value; // dimension of all fields centroid
// printf("downsample_all_data_\n");
}
// ---[ RGB special case
std::vector<pcl::PCLPointField> fields;
int rgba_index = -1;
rgba_index = pcl::getFieldIndex (*input_, "rgb", fields);
if (rgba_index == -1)
rgba_index = pcl::getFieldIndex (*input_, "rgba", fields);
if (rgba_index >= 0)
{
rgba_index = fields[rgba_index].offset;
centroid_size += 3; // centroid + 3 (rgb)
}
TicToc t_p2v;
//global variables
std::vector<PointCloudPtr> cloud_all_threads(threads_);
for (size_t i = 0; i < threads_; ++i) {
cloud_all_threads[i].reset(new PointCloud ());
}
std::vector<std::shared_ptr<std::vector<int>>> index_all_threads(threads_);
std::vector<std::shared_ptr<std::vector<double>>> weight_all_threads(threads_);
std::vector<std::shared_ptr<std::vector<Eigen::VectorXf, Eigen::aligned_allocator<Eigen::VectorXf>>>> centroid_all_threads(threads_);
#pragma omp parallel num_threads(threads_)
{
int thread_id = omp_get_thread_num();
PointCloudPtr& cloud_thread = cloud_all_threads[thread_id];
// PointCloud cloud_thread;
std::vector<VoxelIndex> index_vector; // voxel index, pointer of point
index_vector.reserve(indices_->size() / threads_);
int num_points = 0;
// If we don't want to process the entire cloud, but rather filter points far away from the viewpoint first...
if (!filter_field_name_.empty()) {
// Get the distance field index
std::vector<pcl::PCLPointField> fields;
int distance_idx = pcl::getFieldIndex(*input_, filter_field_name_, fields);
if (distance_idx == -1)
PCL_WARN ("[pcl::%s::applyFilter] Invalid filter field name. Index is %d.\n", getClassName().c_str(),
distance_idx);
// First pass: go over all points and insert them into the index_vector vector
// with calculated idx. Points with the same idx value will contribute to the
// same point of resulting CloudPoint
int thread_id = omp_get_thread_num();
for (std::vector<int>::const_iterator it = indices_->begin(); it != indices_->end(); it += thread_id) {
if (!input_->is_dense)
// Check if the point is invalid
if (!pcl_isfinite (input_->points[*it].x) ||
!pcl_isfinite (input_->points[*it].y) ||
!pcl_isfinite (input_->points[*it].z))
continue;
// Get the distance value
const uint8_t *pt_data = reinterpret_cast<const uint8_t *> (&input_->points[*it]);
float distance_value = 0;
memcpy(&distance_value, pt_data + fields[distance_idx].offset, sizeof(float));
if (filter_limit_negative_) {
// Use a threshold for cutting out points which inside the interval
if ((distance_value < filter_limit_max_) && (distance_value > filter_limit_min_))
continue;
} else {
// Use a threshold for cutting out points which are too close/far away
if ((distance_value > filter_limit_max_) || (distance_value < filter_limit_min_))
continue;
}
int ijk0 = static_cast<int> (floor(input_->points[*it].x * inverse_leaf_size_[0]) -
static_cast<float> (min_b_[0]));
int ijk1 = static_cast<int> (floor(input_->points[*it].y * inverse_leaf_size_[1]) -
static_cast<float> (min_b_[1]));
int ijk2 = static_cast<int> (floor(input_->points[*it].z * inverse_leaf_size_[2]) -
static_cast<float> (min_b_[2]));
// Compute the centroid leaf index
int idx = ijk0 * divb_mul_[0] + ijk1 * divb_mul_[1] + ijk2 * divb_mul_[2];
index_vector.push_back(VoxelIndex(static_cast<unsigned int> (idx), *it));
}
}
// No distance filtering, process all data
else {
// First pass: go over all points and insert them into the index_vector vector
// with calculated idx. Points with the same idx value will contribute to the
// same point of resulting CloudPoint
#pragma omp for schedule(dynamic,1024)
for (size_t i = 0; i < indices_->size(); ++i) {
const int &point_id = indices_->at(i);
const PointT &point = input_->points[point_id];
if (!input_->is_dense)
// Check if the point is invalid
if (!pcl_isfinite (point.x) ||
!pcl_isfinite (point.y) ||
!pcl_isfinite (point.z))
continue;
int ijk0 = static_cast<int> (floor(point.x * inverse_leaf_size_[0]) -
static_cast<float> (min_b_[0])); // index of dimension 1
int ijk1 = static_cast<int> (floor(point.y * inverse_leaf_size_[1]) -
static_cast<float> (min_b_[1])); // index of dimension 2
int ijk2 = static_cast<int> (floor(point.z * inverse_leaf_size_[2]) -
static_cast<float> (min_b_[2])); // index of dimension 3
// Compute the centroid leaf index
int idx = ijk0 * divb_mul_[0] + ijk1 * divb_mul_[1] + ijk2 * divb_mul_[2]; // voxel id the point located
/// !!! so slow !!!
index_vector.emplace_back(
VoxelIndex(static_cast<unsigned int> (idx), point_id));
}
}
// printf("thread %d points to voxel cost: %fms\n", thread_id, t_p2v.toc());
/// !!! too slow!!!
// TicToc t_sort;
// Second pass: sort the index_vector vector using value representing target cell as index
// in effect all points belonging to the same output cell will be next to each other
auto rightshift_func = [](const VoxelIndex &x, const unsigned offset) { return x.idx >> offset; };
boost::sort::spreadsort::integer_sort(index_vector.begin(), index_vector.end(), rightshift_func);
// std::sort(index_vector.begin(), index_vector.end(), std::less<cloud_point_index_idx>());
// printf("thread %d sort cost: %fms\n", thread_id, t_sort.toc());
// TicToc t_valid_voxel;
// Third pass: count output cells
// we need to skip all the same, adjacenent idx values
unsigned int total = 0;
unsigned int index = 0;
// first_and_last_indices_vector[i] represents the index in index_vector of the first point in
// index_vector belonging to the voxel which corresponds to the i-th output point,
// and of the first point not belonging to.
std::vector<std::pair<unsigned int, unsigned int> > first_and_last_indices_vector;
// Worst case size
first_and_last_indices_vector.reserve(index_vector.size());
while (index < index_vector.size()) {
unsigned int i = index + 1;
while (i < index_vector.size() && index_vector[i].idx == index_vector[index].idx)
++i;
//todo
if (i - index >= min_points_per_voxel_)
{
++total;
first_and_last_indices_vector.push_back(std::pair<unsigned int, unsigned int>(index, i));
}
index = i;
}
// printf("thread %d compute valid voxel cost: %fms\n", thread_id, t_valid_voxel.toc());
// TicToc t_layout;
// Fourth pass: compute centroids, insert them into their final position
// cloud_thread.points.resize(total);
size_t cur_size = first_and_last_indices_vector.size();
auto indexes_one_thread = std::make_shared<std::vector<int>>(cur_size);
auto weight_one_thread = std::make_shared<std::vector<double>>(cur_size);
auto centroid_one_thread = std::make_shared<std::vector<Eigen::VectorXf, Eigen::aligned_allocator<Eigen::VectorXf>>>(cur_size);
for (unsigned int cp = 0; cp < first_and_last_indices_vector.size(); ++cp)
{
Eigen::VectorXf centroid = Eigen::VectorXf::Zero (centroid_size);
Eigen::VectorXf temporary = Eigen::VectorXf::Zero (centroid_size);
// calculate centroid - sum values from all input points, that have the same idx value in index_vector array
unsigned int first_index = first_and_last_indices_vector[cp].first;
unsigned int last_index = first_and_last_indices_vector[cp].second;
int voxel_id = index_vector[first_index].idx;
if (!downsample_all_data_) {
centroid[0] = input_->points[index_vector[first_index].cloud_point_index].x;
centroid[1] = input_->points[index_vector[first_index].cloud_point_index].y;
centroid[2] = input_->points[index_vector[first_index].cloud_point_index].z;
} else {
// ---[ RGB special case
if (rgba_index >= 0) {
// Fill r/g/b data, assuming that the order is BGRA
pcl::RGB rgb;
// copy memory from input to rgb
memcpy(&rgb,
reinterpret_cast<const char *> (&input_->points[index_vector[first_index].cloud_point_index]) +
rgba_index, sizeof(RGB));
centroid[centroid_size - 3] = rgb.r;
centroid[centroid_size - 2] = rgb.g;
centroid[centroid_size - 1] = rgb.b;
}
pcl::for_each_type<FieldList>(
NdCopyPointEigenFunctor<PointT>(input_->points[index_vector[first_index].cloud_point_index],
centroid));
}
for (unsigned int i = first_index + 1; i < last_index; ++i)
{
if (!downsample_all_data_) {
centroid[0] += input_->points[index_vector[i].cloud_point_index].x;
centroid[1] += input_->points[index_vector[i].cloud_point_index].y;
centroid[2] += input_->points[index_vector[i].cloud_point_index].z;
} else {
// ---[ RGB special case
if (rgba_index >= 0) {
// Fill r/g/b data, assuming that the order is BGRA
pcl::RGB rgb;
memcpy(&rgb,
reinterpret_cast<const char *> (&input_->points[index_vector[i].cloud_point_index]) +
rgba_index, sizeof(RGB));
temporary[centroid_size - 3] = rgb.r;
temporary[centroid_size - 2] = rgb.g;
temporary[centroid_size - 1] = rgb.b;
}
// copying data between an Eigen type and a PointT (input point, output eigen)
pcl::for_each_type<FieldList>(
NdCopyPointEigenFunctor<PointT>(input_->points[index_vector[i].cloud_point_index],
temporary));
centroid += temporary; // accumulate centroid
}
}
// index is centroid final position in resulting PointCloud
if (save_leaf_layout_)
leaf_layout_[index_vector[first_index].idx] = cp;
(*centroid_one_thread)[cp] = centroid;
(*weight_one_thread)[cp] = last_index-first_index;
(*indexes_one_thread)[cp] = index_vector[first_index].idx;
}
#pragma omp critical
{
centroid_all_threads[thread_id] = centroid_one_thread;
weight_all_threads[thread_id] = weight_one_thread;
index_all_threads[thread_id] = indexes_one_thread;
}
// printf("thread %d compute %d centroids cost: %fms\n", thread_id, (int)cloud_thread->points.size(), t_centriod.toc());
}
//merge cloud from all threads
std::vector<std::vector<std::pair<int, int>>> tasks;
size_t total = AssignTask(index_all_threads, threads_, &tasks);
std::vector<PointCloudPtr> final_clouds(threads_);
#pragma omp parallel num_threads(threads_)
{
int thread_id = omp_get_thread_num();
auto& task = tasks[thread_id];
std::vector<int> cur(task.size());
for(size_t i=0; i<cur.size(); ++i){
cur[i]=task[i].first;
}
PointCloudPtr cloud(new PointCloud());
cloud->reserve(total/threads_);
while(true){
bool finished = true;
int min_voxel_index = std::numeric_limits<int>::max();
for(size_t i=0; i<task.size(); ++i){
if(cur[i]<task[i].second){
min_voxel_index = std::min(min_voxel_index, (*(index_all_threads[i]))[cur[i]]);
finished=false;
}
}
if(finished) break;
Eigen::VectorXf centroid = Eigen::VectorXf::Zero (centroid_size);
int weight = 0;
for(size_t i=0; i<task.size(); ++i){
if(cur[i]<task[i].second && (*(index_all_threads[i]))[cur[i]]==min_voxel_index){
centroid += (*(centroid_all_threads[i]))[cur[i]];
weight += (*(weight_all_threads[i]))[cur[i]];
++cur[i];
}
}
centroid /= float(weight);
cloud->push_back(PointT());
if (!downsample_all_data_){
cloud->back().x = centroid[0];
cloud->back().y = centroid[1];
cloud->back().z = centroid[2];
}else{
// NdCopyEigenPointFunctor( p1 the input Eigen type, p2 the output Point type)
pcl::for_each_type<FieldList>(pcl::NdCopyEigenPointFunctor<PointT>(centroid, cloud->back()));
// ---[ RGB special case
if (rgba_index >= 0) {
// pack r/g/b into rgb
float r = centroid[centroid_size - 3], g = centroid[centroid_size - 2], b = centroid[centroid_size -
1];
int rgb = (static_cast<int> (r) << 16) | (static_cast<int> (g) << 8) | static_cast<int> (b);
// memcpy (reinterpret_cast<char*> (&output.points[index]) + rgba_index, &rgb, sizeof (float));
memcpy(reinterpret_cast<char *> (&(cloud->back())) + rgba_index, &rgb, sizeof(float));
}
}
}
#pragma omp critical
{
final_clouds[thread_id] = cloud;
}
}
size_t final_num = 0;
for(auto& cloud: final_clouds){
final_num += cloud->size();
}
output.resize(final_num);
char* dst= reinterpret_cast<char*>(&output[0]);
size_t offset = 0;
for(auto& cloud: final_clouds){
size_t copy_size = cloud->size()*sizeof(PointT);
char* src = reinterpret_cast<char*>(&((cloud->points)[0]));
std::memcpy(dst+offset, src, copy_size);
offset+=copy_size;
}
}
void pcl::VoxelGridOMP::getMinMax3DOMP(const pcl::PointCloud<PointT> &cloud, const std::vector<int> &indices,
Eigen::Vector4f &min_pt, Eigen::Vector4f &max_pt)
{
// TicToc t_para;
// prepare momery for all threads
std::vector<Eigen::Vector4f> voxel_mins(threads_);
std::vector<Eigen::Vector4f> voxel_maxs(threads_);
// If the data is dense, we don't need to check for NaN
if (cloud.is_dense)
{
#pragma omp parallel num_threads(threads_)
{
// thread private
int thread_id = omp_get_thread_num();
Eigen::Vector4f voxel_min_t, voxel_max_t;
voxel_min_t.setConstant(FLT_MAX);
voxel_max_t.setConstant(-FLT_MAX);
// #pragma omp for
#pragma omp for schedule(dynamic,1024)
for (size_t i = 0; i < indices.size(); i++) {
pcl::Array4fMapConst pt = cloud.points[indices[i]].getArray4fMap();
voxel_min_t = voxel_min_t.array().min(pt);
voxel_max_t = voxel_max_t.array().max(pt);
}
voxel_mins[thread_id] = voxel_min_t;
voxel_maxs[thread_id] = voxel_max_t;
}
}
// NaN or Inf values could exist => check for them
else
{
// not be tested yet
#pragma omp parallel num_threads(threads_)
{
int thread_id = omp_get_thread_num();
Eigen::Vector4f voxel_min_t, voxel_max_t;
voxel_min_t.setConstant(FLT_MAX); // thread private
voxel_max_t.setConstant(-FLT_MAX);
// #pragma omp single
// #pragma omp for
#pragma omp for schedule(dynamic,1024)
for (size_t i = 0; i < indices.size(); i++) {
// Check if the point is invalid
if (!pcl_isfinite (cloud.points[indices[i]].x) ||
!pcl_isfinite (cloud.points[indices[i]].y) ||
!pcl_isfinite (cloud.points[indices[i]].z))
continue;
pcl::Array4fMapConst pt = cloud.points[indices[i]].getArray4fMap();
voxel_min_t = voxel_min_t.array().min(pt);
voxel_max_t = voxel_max_t.array().max(pt);
}
voxel_mins[thread_id] = voxel_min_t;
voxel_maxs[thread_id] = voxel_max_t;
}
}
min_pt = voxel_mins[0];
max_pt = voxel_maxs[0];
for (size_t i = 1; i < threads_; ++i)
{
min_pt = min_pt.array().min(voxel_mins[i].array());
max_pt = max_pt.array().max(voxel_maxs[i].array());
}
// printf("multi thread 4f cost: %fms\n", t_para.toc());
// printf("min max:\n");
// std::cout << min_pt.transpose() << std::endl;
// std::cout << max_pt.transpose() << std::endl;
}