fully implement MLJ #60
Annotations
2 errors
Run julia-actions/julia-docdeploy@v1:
src/mlj_interface.jl#L53
doctest failure in ~/work/Maxnet.jl/Maxnet.jl/src/mlj_interface.jl:53-61
```jldoctest
using Maxnet, MLJBase
p_a, env = Maxnet.bradypus()
mach = machine(MaxnetBinaryClassifier(features = "lqp"), env, categorical(p_a))
fit!(mach)
yhat = MLJBase.predict(mach, env)
# output
```
Subexpression:
using Maxnet, MLJBase
p_a, env = Maxnet.bradypus()
mach = machine(MaxnetBinaryClassifier(features = "lqp"), env, categorical(p_a))
fit!(mach)
yhat = MLJBase.predict(mach, env)
Evaluated output:
┌ Warning: The number and/or types of data arguments do not match what the specified model
│ supports. Suppress this type check by specifying `scitype_check_level=0`.
│
│ Run `@doc Maxnet.MaxnetBinaryClassifier` to learn more about your model's requirements.
│
│ Commonly, but non exclusively, supervised models are constructed using the syntax
│ `machine(model, X, y)` or `machine(model, X, y, w)` while most other models are
│ constructed with `machine(model, X)`. Here `X` are features, `y` a target, and `w`
│ sample or class weights.
│
│ In general, data in `machine(model, data...)` is expected to satisfy
│
│ scitype(data) <: MLJ.fit_data_scitype(model)
│
│ In the present case:
│
│ scitype(data) = Tuple{ScientificTypesBase.Table{Union{AbstractVector{ScientificTypesBase.Count}, AbstractVector{ScientificTypesBase.Multiclass{14}}}}, AbstractVector{ScientificTypesBase.Multiclass{2}}}
│
│ fit_data_scitype(model) = Tuple{ScientificTypesBase.Table{<:Union{AbstractVector{<:ScientificTypesBase.Continuous}, AbstractVector{<:ScientificTypesBase.Finite}}}, AbstractVector{<:ScientificTypesBase.Binary}}
└ @ MLJBase ~/.julia/packages/MLJBase/7nGJF/src/machines.jl:237
[ Info: Training machine(MaxnetBinaryClassifier(features = lqp, …), …).
1116-element UnivariateFiniteVector{Multiclass{2}, Bool, UInt32, Float64}:
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.812, true=>0.188)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.811, true=>0.189)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.501, true=>0.499)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.811, true=>0.189)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.752, true=>0.248)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.71, true=>0.29)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.926, true=>0.0742)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.696, true=>0.304)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.702, true=>0.298)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.649, true=>0.351)
⋮
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.944, true=>0.0559)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.816, true=>0.184)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.998, true=>0.00152)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.997, true=>0.00325)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>1.0, true=>0.000213)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.664, true=>0.336)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.413, true=>0.587)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.922, true=>0.0777)
UnivariateFinite{ScientificTypesBase.Multiclass{2}}(false=>0.999, true=>0.00146)
Expected output:
diff =
Warning: Diff output requires color.
┌ Warning: The number and/or types of data arguments do not match what the specified model
│ supports. Suppress this type check by specifying `scitype_check_level=0`.
│
│ Run `@doc Maxnet.MaxnetBinaryClassifier` to learn more about your model's requirements.
│
│ Commonly, but non exclusively, supervised models are constructed using the syntax
│ `machine(model, X, y)` or `machine(model, X, y, w)` while most other models are
│ constructed with `machine(model, X)`. Here `X` are features, `y` a target, and `w`
│ sample or class weights.
│
│ In general, data in `machine(model, data...)` is expected to satisfy
│
│ scityp
|
Run julia-actions/julia-docdeploy@v1
Process completed with exit code 1.
|
Loading