multilevelmod enables the use of multi-level models (a.k.a mixed-effects models, Bayesian hierarchical models, etc.) with the parsnip package.
(meme courtesy of
@ChelseaParlett
)
You can install the released version of multilevelmod from CRAN with:
install.packages("multilevelmod")
For the development version:
# install.packages("pak")
pak::pak("tidymodels/multilevelmod")
The multilevelmod package provides engines for the models in the following table.
model | engine | mode |
---|---|---|
linear_reg | stan_glmer | regression |
linear_reg | lmer | regression |
linear_reg | glmer | regression |
linear_reg | gee | regression |
linear_reg | lme | regression |
linear_reg | gls | regression |
logistic_reg | gee | classification |
logistic_reg | glmer | classification |
logistic_reg | stan_glmer | classification |
poisson_reg | gee | regression |
poisson_reg | glmer | regression |
poisson_reg | stan_glmer | regression |
Loading mixedlevelmod will trigger it to add a few modeling engines to
the parsnip model database. For Bayesian models, there are now
stan-glmer
engines for linear_reg()
, logistic_reg()
, and
poisson_reg()
.
To use these, the function parsnip::fit()
function should be used
instead of parsnip::fit_xy()
so that the model terms can be specified
using the lme
/lme4
syntax.
The sleepstudy
data is used as an example:
library(multilevelmod)
set.seed(1234)
data(sleepstudy, package = "lme4")
mixed_model_spec <- linear_reg() %>% set_engine("lmer")
mixed_model_fit <-
mixed_model_spec %>%
fit(Reaction ~ Days + (Days | Subject), data = sleepstudy)
mixed_model_fit
#> parsnip model object
#>
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: Reaction ~ Days + (Days | Subject)
#> Data: data
#> REML criterion at convergence: 1743.628
#> Random effects:
#> Groups Name Std.Dev. Corr
#> Subject (Intercept) 24.741
#> Days 5.922 0.07
#> Residual 25.592
#> Number of obs: 180, groups: Subject, 18
#> Fixed Effects:
#> (Intercept) Days
#> 251.41 10.47
For a Bayesian model:
hier_model_spec <- linear_reg() %>% set_engine("stan_glmer")
hier_model_fit <-
hier_model_spec %>%
fit(Reaction ~ Days + (Days | Subject), data = sleepstudy)
hier_model_fit
#> parsnip model object
#>
#> stan_glmer
#> family: gaussian [identity]
#> formula: Reaction ~ Days + (Days | Subject)
#> observations: 180
#> ------
#> Median MAD_SD
#> (Intercept) 251.3 6.5
#> Days 10.4 1.7
#>
#> Auxiliary parameter(s):
#> Median MAD_SD
#> sigma 25.9 1.6
#>
#> Error terms:
#> Groups Name Std.Dev. Corr
#> Subject (Intercept) 24.1
#> Days 6.9 0.07
#> Residual 26.0
#> Num. levels: Subject 18
#>
#> ------
#> * For help interpreting the printed output see ?print.stanreg
#> * For info on the priors used see ?prior_summary.stanreg
This project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.
-
For questions and discussions about tidymodels packages, modeling, and machine learning, please post on RStudio Community.
-
If you think you have encountered a bug, please submit an issue.
-
Either way, learn how to create and share a reprex (a minimal, reproducible example), to clearly communicate about your code.
-
Check out further details on contributing guidelines for tidymodels packages and how to get help.