Skip to content

Commit

Permalink
build based on 2e7b473
Browse files Browse the repository at this point in the history
  • Loading branch information
Documenter.jl committed Mar 31, 2024
1 parent 9e2ee44 commit 526d0bc
Show file tree
Hide file tree
Showing 15 changed files with 283 additions and 287 deletions.
2 changes: 1 addition & 1 deletion v0.1.36/.documenter-siteinfo.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"documenter":{"julia_version":"1.10.2","generation_timestamp":"2024-03-30T20:13:10","documenter_version":"1.3.0"}}
{"documenter":{"julia_version":"1.10.2","generation_timestamp":"2024-03-31T11:47:17","documenter_version":"1.3.0"}}
98 changes: 49 additions & 49 deletions v0.1.36/api/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion v0.1.36/call_index/index.html

Large diffs are not rendered by default.

10 changes: 5 additions & 5 deletions v0.1.36/how-to/loops/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -69,10 +69,10 @@
rho{F}{F} = rho{H}{H}
rho{H}{F} = 0.088
rho{F}{H} = rho{H}{F}
end</code><code class="nohighlight hljs ansi" style="display:block;">Remove redundant variables in non stochastic steady state problem: 0.801 seconds
Set up non stochastic steady state problem: 0.676 seconds
Take symbolic derivatives up to first order: 0.82 seconds
Find non stochastic steady state: 6.952 seconds
end</code><code class="nohighlight hljs ansi" style="display:block;">Remove redundant variables in non stochastic steady state problem: 0.65 seconds
Set up non stochastic steady state problem: 0.359 seconds
Take symbolic derivatives up to first order: 0.846 seconds
Find non stochastic steady state: 7.194 seconds
Model: Backus_Kehoe_Kydland_1992
Variables
Total: 56
Expand All @@ -84,4 +84,4 @@
Shocks: 2
Parameters: 28
Calibration
equations: 2</code></pre></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../../tutorials/estimation/">« Estimate a model using gradient based samplers - Schorfheide (2000)</a><a class="docs-footer-nextpage" href="../obc/">Occasionally binding constraints »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.3.0 on <span class="colophon-date" title="Saturday 30 March 2024 20:13">Saturday 30 March 2024</span>. Using Julia version 1.10.2.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
equations: 2</code></pre></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../../tutorials/estimation/">« Estimate a model using gradient based samplers - Schorfheide (2000)</a><a class="docs-footer-nextpage" href="../obc/">Occasionally binding constraints »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.3.0 on <span class="colophon-date" title="Sunday 31 March 2024 11:47">Sunday 31 March 2024</span>. Using Julia version 1.10.2.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
34 changes: 17 additions & 17 deletions v0.1.36/how-to/obc/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -90,10 +90,10 @@

std_nu = .0025

end</code><code class="nohighlight hljs ansi" style="display:block;">Remove redundant variables in non stochastic steady state problem: 1.824 seconds
Set up non stochastic steady state problem: 3.728 seconds
Take symbolic derivatives up to first order: 1.062 seconds
Find non stochastic steady state: 6.475 seconds
end</code><code class="nohighlight hljs ansi" style="display:block;">Remove redundant variables in non stochastic steady state problem: 1.466 seconds
Set up non stochastic steady state problem: 4.305 seconds
Take symbolic derivatives up to first order: 1.124 seconds
Find non stochastic steady state: 6.99 seconds
Model: Gali_2015_chapter_3_obc
Variables
Total: 68
Expand Down Expand Up @@ -231,10 +231,10 @@
std_nu = .0025

R &gt; 1.000001
end</code><code class="nohighlight hljs ansi" style="display:block;">Remove redundant variables in non stochastic steady state problem: 1.069 seconds
Set up non stochastic steady state problem: 3.077 seconds
Take symbolic derivatives up to first order: 0.201 seconds
Find non stochastic steady state: 0.382 seconds
end</code><code class="nohighlight hljs ansi" style="display:block;">Remove redundant variables in non stochastic steady state problem: 1.869 seconds
Set up non stochastic steady state problem: 3.813 seconds
Take symbolic derivatives up to first order: 0.367 seconds
Find non stochastic steady state: 0.392 seconds
Model: Gali_2015_chapter_3_obc
Variables
Total: 68
Expand Down Expand Up @@ -387,10 +387,10 @@
σ = 0.05
m = 1
γ = 1
end</code><code class="nohighlight hljs ansi" style="display:block;">Remove redundant variables in non stochastic steady state problem: 0.485 seconds
Set up non stochastic steady state problem: 9.769 seconds
Take symbolic derivatives up to first order: 0.118 seconds
Find non stochastic steady state: 2.709 seconds
end</code><code class="nohighlight hljs ansi" style="display:block;">Remove redundant variables in non stochastic steady state problem: 0.504 seconds
Set up non stochastic steady state problem: 10.304 seconds
Take symbolic derivatives up to first order: 0.138 seconds
Find non stochastic steady state: 2.871 seconds
Model: borrowing_constraint
Variables
Total: 49
Expand All @@ -407,8 +407,8 @@
<span class="sgr35">(:C)</span> 0.95
<span class="sgr35">(:Y)</span> 1.0
<span class="sgr35">(:Χᵒᵇᶜ⁺ꜝ¹ꜝ)</span> 0.0
<span class="sgr35">(:λ)</span> 0.008157894736842098
<span class="sgr35">(:χᵒᵇᶜ⁺ꜝ¹ꜝʳ)</span> -0.008157894736842098
<span class="sgr35">(:λ)</span> 0.008157894736842097
<span class="sgr35">(:χᵒᵇᶜ⁺ꜝ¹ꜝʳ)</span> -0.008157894736842097
<span class="sgr35">(:χᵒᵇᶜ⁺ꜝ¹ꜝˡ)</span> 8.773722820781672e-25
<span class="sgr35">(:ϵᵒᵇᶜ⁺ꜝ¹ꜝ)</span> 0.0
Expand Down Expand Up @@ -440,16 +440,16 @@
<span class="sgr35">(:B)</span> 0.999025 0.978434 1.0 1.0
<span class="sgr35">(:C)</span> 0.94805 0.907891 0.95 0.95
<span class="sgr35">(:Y)</span> 0.999025 0.978434 1.0 1.0
<span class="sgr35">(:λ)</span> 0.00951431 0.0370327 0.00815789 0.00815789</code></pre><p>Let&#39;s look at the mean and standard deviation of borrowing:</p><pre><code class="language-julia-repl hljs" style="display:block;">julia&gt; import Statistics</code><code class="nohighlight hljs ansi" style="display:block;"></code><br/><code class="language-julia-repl hljs" style="display:block;">julia&gt; Statistics.mean(sims(:B,:,:))</code><code class="nohighlight hljs ansi" style="display:block;">0.959722395107753</code></pre><p>and</p><pre><code class="language-julia-repl hljs" style="display:block;">julia&gt; Statistics.std(sims(:B,:,:))</code><code class="nohighlight hljs ansi" style="display:block;">0.08986494438053381</code></pre><p>Compare this to the theoretical mean of the model without the occasionally binding constraint:</p><pre><code class="language-julia-repl hljs" style="display:block;">julia&gt; get_mean(borrowing_constraint)</code><code class="nohighlight hljs ansi" style="display:block;">1-dimensional <span class="sgr1">KeyedArray(NamedDimsArray(...))</span> with keys:
<span class="sgr35">(:λ)</span> 0.00951431 0.0370327 0.00815789 0.00815789</code></pre><p>Let&#39;s look at the mean and standard deviation of borrowing:</p><pre><code class="language-julia-repl hljs" style="display:block;">julia&gt; import Statistics</code><code class="nohighlight hljs ansi" style="display:block;"></code><br/><code class="language-julia-repl hljs" style="display:block;">julia&gt; Statistics.mean(sims(:B,:,:))</code><code class="nohighlight hljs ansi" style="display:block;">0.9597223949671511</code></pre><p>and</p><pre><code class="language-julia-repl hljs" style="display:block;">julia&gt; Statistics.std(sims(:B,:,:))</code><code class="nohighlight hljs ansi" style="display:block;">0.08986494469244331</code></pre><p>Compare this to the theoretical mean of the model without the occasionally binding constraint:</p><pre><code class="language-julia-repl hljs" style="display:block;">julia&gt; get_mean(borrowing_constraint)</code><code class="nohighlight hljs ansi" style="display:block;">1-dimensional <span class="sgr1">KeyedArray(NamedDimsArray(...))</span> with keys:
<span class="sgr35">Variables ∈ 4-element Vector{Symbol}</span>
And data, <span class="sgr1">4-element Vector{Float64}</span>:
<span class="sgr35">(:B)</span> 1.0
<span class="sgr35">(:C)</span> 0.95
<span class="sgr35">(:Y)</span> 1.0
<span class="sgr35">(:λ)</span> 0.008157894736842098</code></pre><p>and the theoretical standard deviation:</p><pre><code class="language-julia-repl hljs" style="display:block;">julia&gt; get_std(borrowing_constraint)</code><code class="nohighlight hljs ansi" style="display:block;">1-dimensional <span class="sgr1">KeyedArray(NamedDimsArray(...))</span> with keys:
<span class="sgr35">(:λ)</span> 0.008157894736842097</code></pre><p>and the theoretical standard deviation:</p><pre><code class="language-julia-repl hljs" style="display:block;">julia&gt; get_std(borrowing_constraint)</code><code class="nohighlight hljs ansi" style="display:block;">1-dimensional <span class="sgr1">KeyedArray(NamedDimsArray(...))</span> with keys:
<span class="sgr35">Variables ∈ 4-element Vector{Symbol}</span>
And data, <span class="sgr1">4-element Vector{Float64}</span>:
<span class="sgr35">(:B)</span> 0.1147078669352811
<span class="sgr35">(:C)</span> 0.1319140469755731
<span class="sgr35">(:Y)</span> 0.11470786693528105
<span class="sgr35">(:λ)</span> 0.07031743997991882</code></pre><p>The mean of borrowing is lower in the model with occasionally binding constraints compared to the model without and the standard deviation is higher.</p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../loops/">« Programmatic model writing using for-loops</a><a class="docs-footer-nextpage" href="../../api/">API »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.3.0 on <span class="colophon-date" title="Saturday 30 March 2024 20:13">Saturday 30 March 2024</span>. Using Julia version 1.10.2.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
<span class="sgr35">(:λ)</span> 0.07031743997991882</code></pre><p>The mean of borrowing is lower in the model with occasionally binding constraints compared to the model without and the standard deviation is higher.</p></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../loops/">« Programmatic model writing using for-loops</a><a class="docs-footer-nextpage" href="../../api/">API »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.3.0 on <span class="colophon-date" title="Sunday 31 March 2024 11:47">Sunday 31 March 2024</span>. Using Julia version 1.10.2.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
2 changes: 1 addition & 1 deletion v0.1.36/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion v0.1.36/search_index.js

Large diffs are not rendered by default.

Loading

0 comments on commit 526d0bc

Please sign in to comment.