Skip to content

Commit

Permalink
fixdocs (#66)
Browse files Browse the repository at this point in the history
* other seed

* update version info on docs

* rm Plots; StatsPlots does it

* update get_estimated_variables docstring
  • Loading branch information
thorek1 authored Jan 8, 2024
1 parent 052c723 commit 4a16a02
Show file tree
Hide file tree
Showing 6 changed files with 16 additions and 15 deletions.
9 changes: 6 additions & 3 deletions .github/workflows/documentation.yml
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,8 @@ jobs:
contents: write
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: julia-actions/setup-julia@latest
- uses: actions/checkout@v4
- uses: julia-actions/setup-julia@v1
with:
version: '1'
# - run: pip3 install sympy
Expand All @@ -31,6 +31,9 @@ jobs:
DOCUMENTER_KEY: ${{ secrets.DOCUMENTER_KEY }} # If authenticating with SSH deploy key
#run: julia --project=docs/ docs/make.jl
run: julia --project=docs/ --code-coverage=user docs/make.jl
- uses: julia-actions/julia-processcoverage@latest
- uses: julia-actions/julia-processcoverage@v1
- uses: codecov/codecov-action@v3
with:
token: ${{ secrets.CODECOV_TOKEN }}
file: lcov.info

4 changes: 1 addition & 3 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,6 @@ MatrixEquations = "^2"
NLopt = "0.6, ^1"
Optim = "^1"
Pigeons = "^0.2"
Plots = "^1"
PrecompileTools = "^1"
REPL = "^1"
Random = "^1"
Expand Down Expand Up @@ -106,11 +105,10 @@ LineSearches = "d3d80556-e9d4-5f37-9878-2ab0fcc64255"
MCMCChains = "c7f686f2-ff18-58e9-bc7b-31028e88f75d"
Optim = "429524aa-4258-5aef-a3af-852621145aeb"
Pigeons = "0eb8d820-af6a-4919-95ae-11206f830c31"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
StatsPlots = "f3b207a7-027a-5e70-b257-86293d7955fd"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
Turing = "fce5fe82-541a-59a6-adf8-730c64b5f9a0"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"

[targets]
test = ["Aqua", "JET", "CSV", "DataFrames", "DynamicPPL", "MCMCChains", "LineSearches", "Optim", "Test", "Turing", "Pigeons", "FiniteDifferences", "Zygote", "Plots", "StatsPlots"]
test = ["Aqua", "JET", "CSV", "DataFrames", "DynamicPPL", "MCMCChains", "LineSearches", "Optim", "Test", "Turing", "Pigeons", "FiniteDifferences", "Zygote", "StatsPlots"]
2 changes: 1 addition & 1 deletion docs/src/how-to/loops.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ Putting these these elements together we can write the multi-country model equat
```@setup howto_loops
ENV["GKSwstype"] = "100"
using Random
Random.seed!(30)
Random.seed!(3)
```

```@repl howto_loops
Expand Down
2 changes: 1 addition & 1 deletion docs/src/tutorials/estimation.md
Original file line number Diff line number Diff line change
Expand Up @@ -145,7 +145,7 @@ StatsPlots.plot(chain_NUTS);
Next, we are plotting the posterior loglikelihood along two parameters dimensions, with the other parameters ket at the posterior mean, and add the samples to the visualisation. This visualisation allows us to understand the curvature of the posterior and puts the samples in context.

```@repl tutorial_2
using ComponentArrays, MCMCChains, DynamicPPL, Plots
using ComponentArrays, MCMCChains, DynamicPPL
parameter_mean = mean(chain_NUTS)
pars = ComponentArray(parameter_mean.nt[2],Axis(parameter_mean.nt[1]))
Expand Down
2 changes: 1 addition & 1 deletion src/MacroModelling.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6869,7 +6869,7 @@ if VERSION >= v"1.9"
# get_SSS(FS2000, silent = true)
# get_SSS(FS2000, algorithm = :third_order, silent = true)

# import Plots, StatsPlots
# import StatsPlots
# plot_irf(FS2000)
# plot_solution(FS2000,:k) # fix warning when there is no sensitivity and all values are the same. triggers: no strict ticks found...
# plot_conditional_variance_decomposition(FS2000)
Expand Down
12 changes: 6 additions & 6 deletions src/get_functions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,7 @@ end

"""
$(SIGNATURES)
Return the estimated variables based on the inversion filter (depending on the `filter` keyword argument), or Kalman filter or smoother (depending on the `smooth` keyword argument) using the provided data and (non-)linear solution of the model. Data is by default assumed to be in levels unless `data_in_levels` is set to `false`.
Return the estimated variables (in levels by default, see `levels` keyword argument) based on the inversion filter (depending on the `filter` keyword argument), or Kalman filter or smoother (depending on the `smooth` keyword argument) using the provided data and (non-)linear solution of the model. Data is by default assumed to be in levels unless `data_in_levels` is set to `false`.
# Arguments
- $MODEL
Expand Down Expand Up @@ -262,11 +262,11 @@ get_estimated_variables(RBC,simulation([:c],:,:simulate))
↓ Variables ∈ 4-element Vector{Symbol}
→ Periods ∈ 40-element UnitRange{Int64}
And data, 4×40 Matrix{Float64}:
(1) (2) (3) (4) … (37) (38) (39) (40)
(:c) -0.000640535 0.00358475 0.000455785 0.00490466 0.0496719 0.055509 0.0477877 0.0436101
(:k) -0.00671639 0.0324867 0.00663736 0.0456383 0.500217 0.548478 0.481045 0.437527
(:q) 0.00334817 0.0426535 -0.0247438 0.0440383 -0.0114766 0.113775 -0.00867574 0.00971302
(:z) 0.000601617 0.00626684 -0.00393712 0.00632712 -0.00771079 0.0112496 -0.00704709 -0.00366442
(1) (2) (3) (4) … (37) (38) (39) (40)
(:c) 5.92901 5.92797 5.92847 5.92048 5.95845 5.95697 5.95686 5.96173
(:k) 47.3185 47.3087 47.3125 47.2392 47.6034 47.5969 47.5954 47.6402
(:q) 6.87159 6.86452 6.87844 6.79352 7.00476 6.9026 6.90727 6.95841
(:z) -0.00109471 -0.00208056 4.43613e-5 -0.0123318 0.0162992 0.000445065 0.00119089 0.00863586
```
"""
function get_estimated_variables(𝓂::ℳ,
Expand Down

0 comments on commit 4a16a02

Please sign in to comment.