Skip to content

GraphCompass: Graph Comparison Tools for Differential Analyses in Spatial Systems

License

Notifications You must be signed in to change notification settings

theislab/graphcompass

Repository files navigation

GraphCompass GraphCompass (Graph Comparison Tools for Differential Analyses in Spatial Systems) is a Python-based framework that brings together a robust suite of graph analysis and visualization methods, specifically tailored for the differential analysis of cell spatial organization using spatial omics data.

It is developed on top on Squidpy and AnnData.

Features

GraphCompass provides differential analysis methods to study spatial organization across conditions at three levels of abstraction:

  1. Cell-type-specific subgraphs:

    i. Portrait method,

    ii. Diffusion method.

  2. Cellular neighborhoods:

    i. GLMs for neighborhood enrichment analysis.

  3. Entire graphs:

    i. Wasserstein WL kernel,

    ii. Filtration curves.

Tutorials for the different methods can be found in the notebooks folder.

Requirements

You will find all the necessary dependencies in the pyproject.toml file. Dependencies are automatically installed when you install GraphCompass.

Installation

You can install GraphCompass via pip from PyPI.

$ pip install graphcompass

or you can install GraphCompass by cloning the repository and running:

$ pip install -e .

Usage

Contributing

[COMING SOON] Contributions are very welcome. To learn more, see the [Contributor Guide].

License

Distributed under the terms of the MIT license, GraphCompass is free and open source software.

Issues

If you encounter any problems, please file an issue along with a detailed description.

Credits

This project was generated from @cjolowicz's Hypermodern Python Cookiecutter template.

[COMING SOON] [contributor guide]: https://github.com/theislab/graphcompass/blob/main/CONTRIBUTING.md

About

GraphCompass: Graph Comparison Tools for Differential Analyses in Spatial Systems

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published