Skip to content

tetis-nlp/geographical-biases-in-llms

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Geographical Biases in Large Language Models (LLMs)

This tutorial aims to identify geographical biases propagated by LLMs. For this purpose, 4 indicators are proposed.

  1. Spatial disparities in geographical knowledge. Open In Colab
  2. Spatial information coverage in training datasets. Open In Colab
  3. Correlation between geographic distance and semantic distance. Open In Colab
  4. Anomaly between geographical distance and semantic distance. Open In Colab

Semantic Distances
Fig. 1: Average semantic distances (using BERT) between the three most populous cities in a country compared to other cities worldwide.

Semantic Distances
Fig. 2: Percentage of correct country predictions given cities name with more than 100K inhabitants by spatial aggregation in 5° by 5° pixels?


Authors

Rémy Decoupes
Maguelonne Teisseire
Mathieu Roche

Acknowledgement:

This study was partially funded by EU grant 874850 MOOD and is catalogued as MOOD099. The contents of this publication are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission

mood


Citing this work

If you find this work helpful or refer to it in your research, please consider citing:

  • Evaluation of Geographical Distortions in Language Models: A Crucial Step Towards Equitable Representations, Rémy Decoupes, Roberto Interdonato, Mathieu Roche, Maguelonne Teisseire, Sarah Valentin. arXiv

Reproducing the article

Figures and Tables could be reproduce by following these instructions. Please note that you will require a GPU with a minimum of 24 GB RAM. The total estimated execution time, if the indicators are run sequentially, is approximately 3 to 4 days.

This tutorial has been presented in

AgroParisTech CIRAD CNRS INRAE

About

Evaluation of the quality of LLM geo knowledge

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published