Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

#4505: Add end to end demo for functional bert model #4582

Merged
merged 1 commit into from
Jan 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions models/experimental/functional_bert/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
## functional_bert Demo
## How to Run

Use `pytest --disable-warnings --input-path="models/experimental/functional_bert/demo/input_data.json" models/experimental/functional_bert/demo/demo.py::test_demo[models.experimental.functional_bert.tt.ttnn_functional_bert-phiyodr/bert-large-finetuned-squad2]` to run the demo.

If you wish to run the demo for ttnn_optimized_functional_bert, use `pytest --disable-warnings --input-path="models/experimental/functional_bert/demo/input_data.json" models/experimental/functional_bert/demo/demo.py::test_demo[models.experimental.functional_bert.tt.ttnn_optimized_functional_bert-phiyodr/bert-large-finetuned-squad2]` to run the demo.

If you wish to run the demo with a different input use `pytest --disable-warnings --input-path="<address_to_your_json_file.json>" models/experimental/functional_bert/demo/demo.py::test_demo[models.experimental.functional_bert.tt.ttnn_functional_bert-phiyodr/bert-large-finetuned-squad2]`. This file is expected to have exactly 8 inputs.

Our second demo is designed to run SQuADV2 dataset, run this with `pytest --disable-warnings models/experimental/functional_bert/demo/demo.py::test_demo_squadv2[3-models.experimental.functional_bert.tt.ttnn_optimized_functional_bert-phiyodr/bert-large-finetuned-squad2]`.

If you wish to run for `n_iterations` samples, use `pytest --disable-warnings models/experimental/functional_bert/demo/demo.py::test_demo_squadv2[<n_iterations>-models.experimental.functional_bert.tt.ttnn_optimized_functional_bert-phiyodr/bert-large-finetuned-squad2]`


# Inputs
Inputs by default are provided from `input_data.json`. If you wish you to change the inputs, provide a different path to test_demo.

We do not recommend modifying `input_data.json` file.

# Details
The entry point to functional_bert model is bert_for_question_answering in `models/experimental/functional_bert/tt/ttnn_functional_bert.py` (`models/experimental/functional_bert/tt/ttnn_optimized_functional_bert.py` for optimized version). The model picks up certain configs and weights from huggingface pretrained model. We have used `phiyodr/bert-large-finetuned-squad2` version from huggingface as our reference.
312 changes: 312 additions & 0 deletions models/experimental/functional_bert/demo/demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,312 @@
# SPDX-FileCopyrightText: © 2023 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

import json
import pytest
import torch
from loguru import logger

import transformers
import ttnn
import tt_lib
from models.utility_functions import (
disable_compilation_reports,
disable_persistent_kernel_cache,
profiler,
)
from models.experimental.functional_bert.tt import ttnn_functional_bert
from models.experimental.functional_bert.tt import ttnn_optimized_functional_bert

from models.datasets.dataset_squadv2 import squadv2_1K_samples_input, squadv2_answer_decode_batch
from ttnn.model_preprocessing import (
preprocess_model_parameters,
)

from ttnn.model_preprocessing import *
from transformers import BertForQuestionAnswering, BertTokenizer, pipeline

import evaluate


def load_inputs(input_path, batch):
with open(input_path) as f:
input_data = json.load(f)
assert len(input_data) >= batch, f"Input data needs to have at least {batch} (batch size) entries."

context = []
question = []
for i in range(batch):
context.append(input_data[i]["context"])
question.append(input_data[i]["question"])

return context, question


def run_bert_question_and_answering_inference(
device,
use_program_cache,
model_name,
batch_size,
sequence_size,
functional_bert,
model_location_generator,
input_path,
):
disable_persistent_kernel_cache()

model = str(model_location_generator(model_name, model_subdir="Bert"))
hugging_face_reference_model = BertForQuestionAnswering.from_pretrained(model, torchscript=False)
hugging_face_reference_model.eval()

# set up tokenizer
tokenizer_name = str(model_location_generator(model_name, model_subdir="Bert"))
tokenizer = BertTokenizer.from_pretrained(tokenizer_name)
config = hugging_face_reference_model.config
nlp = pipeline("question-answering", model=hugging_face_reference_model, tokenizer=tokenizer)

if functional_bert == ttnn_functional_bert:
tt_model_name = f"ttnn_{model_name}"
elif functional_bert == ttnn_optimized_functional_bert:
tt_model_name = f"ttnn_{model_name}_optimized"
else:
raise ValueError(f"Unknown functional_bert: {functional_bert}")

profiler.start(f"preprocessing_parameter")
parameters = preprocess_model_parameters(
tt_model_name,
initialize_model=lambda: transformers.BertForQuestionAnswering.from_pretrained(
model_name, torchscript=False
).eval(),
custom_preprocessor=functional_bert.custom_preprocessor,
device=device,
)
profiler.end(f"preprocessing_parameter")

context, question = load_inputs(input_path, batch_size)

preprocess_params, _, postprocess_params = nlp._sanitize_parameters()
preprocess_params["max_seq_len"] = sequence_size
inputs = nlp._args_parser({"context": context, "question": question})
preprocessed_inputs = []
for i in range(batch_size):
model_input = next(nlp.preprocess(inputs[0][i], **preprocess_params))
single_input = {
"example": model_input["example"],
"inputs": model_input,
}
preprocessed_inputs.append(single_input)

bert_input = tokenizer.batch_encode_plus(
zip(question, context),
max_length=sequence_size,
padding="max_length",
truncation=True,
return_attention_mask=True,
return_token_type_ids=True,
return_tensors="pt",
)
profiler.start(f"preprocessing_input")
ttnn_bert_inputs = functional_bert.preprocess_inputs(
bert_input["input_ids"],
bert_input["token_type_ids"],
torch.zeros(1, sequence_size) if functional_bert == ttnn_optimized_functional_bert else None,
device=device,
)
profiler.end(f"preprocessing_input")

profiler.start(f"inference_time")
tt_output = functional_bert.bert_for_question_answering(
config,
*ttnn_bert_inputs,
parameters=parameters,
)
profiler.end(f"inference_time")

tt_output = ttnn.to_torch(ttnn.from_device(tt_output)).reshape(batch_size, 1, sequence_size, -1).to(torch.float32)

tt_start_logits = tt_output[..., :, 0].squeeze(1)
tt_end_logits = tt_output[..., :, 1].squeeze(1)

model_answers = {}
profiler.start("post_processing_output_to_string")
for i in range(batch_size):
tt_res = {
"start": tt_start_logits[i],
"end": tt_end_logits[i],
"example": preprocessed_inputs[i]["example"],
**preprocessed_inputs[i]["inputs"],
}

tt_answer = nlp.postprocess([tt_res], **postprocess_params)

logger.info(f"answer: {tt_answer['answer']}\n")
model_answers[i] = tt_answer["answer"]

profiler.end("post_processing_output_to_string")

measurements = {
"preprocessing_parameter": profiler.get("preprocessing_parameter"),
"preprocessing_input": profiler.get("preprocessing_input"),
"inference_time": profiler.get("inference_time"),
"post_processing": profiler.get("post_processing_output_to_string"),
}
logger.info(f"preprocessing_parameter: {measurements['preprocessing_parameter']} s")
logger.info(f"preprocessing_input: {measurements['preprocessing_input']} s")
logger.info(f"inference_time: {measurements['inference_time']} s")
logger.info(f"post_processing : {measurements['post_processing']} s")

return measurements


def run_bert_question_and_answering_inference_squad_v2(
device,
use_program_cache,
model_name,
batch_size,
sequence_size,
functional_bert,
model_location_generator,
n_iterations,
):
disable_persistent_kernel_cache()

model = str(model_location_generator(model_name, model_subdir="Bert"))
hugging_face_reference_model = BertForQuestionAnswering.from_pretrained(model, torchscript=False)
hugging_face_reference_model.eval()

# set up tokenizer
tokenizer_name = str(model_location_generator(model_name, model_subdir="Bert"))
tokenizer = BertTokenizer.from_pretrained(tokenizer_name)
config = hugging_face_reference_model.config

if functional_bert == ttnn_functional_bert:
tt_model_name = f"ttnn_{model_name}"
elif functional_bert == ttnn_optimized_functional_bert:
tt_model_name = f"ttnn_{model_name}_optimized"
else:
raise ValueError(f"Unknown functional_bert: {functional_bert}")

parameters = preprocess_model_parameters(
tt_model_name,
initialize_model=lambda: transformers.BertForQuestionAnswering.from_pretrained(
model_name, torchscript=False
).eval(),
custom_preprocessor=functional_bert.custom_preprocessor,
device=device,
)

nlp = pipeline("question-answering", model=hugging_face_reference_model, tokenizer=tokenizer)

attention_mask = True
token_type_ids = True
inputs_squadv2 = squadv2_1K_samples_input(tokenizer, sequence_size, attention_mask, token_type_ids, batch_size)
squad_metric = evaluate.load("squad_v2")

with torch.no_grad():
pred_labels = []
cpu_pred_labels = []
true_labels = []
i = 0
for batch in inputs_squadv2:
if i < n_iterations:
batch_data = batch[0]
curr_batch_size = batch_data["input_ids"].shape[0]
ttnn_bert_inputs = functional_bert.preprocess_inputs(
batch_data["input_ids"],
batch_data["token_type_ids"],
torch.zeros(1, sequence_size) if functional_bert == ttnn_optimized_functional_bert else None,
device=device,
)

tt_output = functional_bert.bert_for_question_answering(
config,
*ttnn_bert_inputs,
parameters=parameters,
)
tt_output = (
ttnn.to_torch(ttnn.from_device(tt_output))
.reshape(batch_size, 1, sequence_size, -1)
.to(torch.float32)
)
cpu_output = hugging_face_reference_model(**batch_data)
references = batch[1]
question = batch[2]
context = batch[3]

cpu_predictions, tt_predictions = squadv2_answer_decode_batch(
hugging_face_reference_model,
tokenizer,
nlp,
references,
cpu_output,
tt_output,
curr_batch_size,
question,
context,
)
pred_labels.extend(tt_predictions)
cpu_pred_labels.extend(cpu_predictions)
true_labels.extend(references)

del tt_output
i += 1
eval_score = squad_metric.compute(predictions=pred_labels, references=true_labels)
cpu_eval_score = squad_metric.compute(predictions=cpu_pred_labels, references=true_labels)
logger.info(f"\tTT_Eval: exact: {eval_score['exact']} -- F1: {eval_score['f1']}")
logger.info(f"\tCPU_Eval: exact: {cpu_eval_score['exact']} -- F1: {cpu_eval_score['f1']}")


@pytest.mark.parametrize("model_name", ["phiyodr/bert-large-finetuned-squad2"])
@pytest.mark.parametrize("functional_bert", [ttnn_functional_bert, ttnn_optimized_functional_bert])
def test_demo(
input_path,
model_name,
functional_bert,
model_location_generator,
device,
use_program_cache,
):
disable_persistent_kernel_cache()
disable_compilation_reports()

tt_lib.profiler.set_profiler_location(f"tt_metal/tools/profiler/logs/functional_bert")
return run_bert_question_and_answering_inference(
device=device,
use_program_cache=use_program_cache,
model_name=model_name,
batch_size=8,
sequence_size=384,
functional_bert=functional_bert,
model_location_generator=model_location_generator,
input_path=input_path,
)


@pytest.mark.parametrize("model_name", ["phiyodr/bert-large-finetuned-squad2"])
@pytest.mark.parametrize("functional_bert", [ttnn_functional_bert, ttnn_optimized_functional_bert])
@pytest.mark.parametrize(
"n_iterations",
((3),),
)
def test_demo_squadv2(
model_name,
functional_bert,
n_iterations,
model_location_generator,
device,
use_program_cache,
):
disable_persistent_kernel_cache()
disable_compilation_reports()

return run_bert_question_and_answering_inference_squad_v2(
device=device,
use_program_cache=use_program_cache,
model_name=model_name,
batch_size=8,
sequence_size=384,
functional_bert=functional_bert,
model_location_generator=model_location_generator,
n_iterations=n_iterations,
)
Loading