-
Notifications
You must be signed in to change notification settings - Fork 74
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2b1b326
commit 32ea25e
Showing
26 changed files
with
5,782 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
// SPDX-FileCopyrightText: © 2023 Tenstorrent Inc. | ||
// | ||
// SPDX-License-Identifier: Apache-2.0 | ||
|
||
#include <limits> | ||
#include <optional> | ||
#include <string> | ||
#include <tt_numpy/functions.hpp> | ||
#include <vector> | ||
|
||
#include "tt_eager/tensor/tensor.hpp" | ||
#include "tt_eager/tt_dnn/op_library/moreh_layernorm/moreh_layernorm_op.hpp" | ||
#include "tt_metal/host_api.hpp" | ||
|
||
using namespace tt; | ||
using namespace tt::tt_metal; | ||
|
||
int main(int argc, char **argv) { | ||
bool pass = true; | ||
|
||
const std::vector<std::string> run_types{"autoformat", "primary"}; | ||
|
||
const std::vector<uint32_t> normalized_dims_vec{1, 2, 3, 4}; | ||
|
||
const std::vector<std::vector<uint32_t>> input_shapes{ | ||
{1, 1, TILE_HEIGHT, TILE_WIDTH}, | ||
{2, 2, 2 * TILE_HEIGHT - 15, 2 * TILE_WIDTH - 17}, | ||
}; | ||
|
||
const std::vector<BufferType> output_buffer_types{BufferType::DRAM, BufferType::L1}; | ||
|
||
for (const auto &input_shape : input_shapes) { | ||
for (const auto normalized_dims : normalized_dims_vec) { | ||
for (const auto &run_type : run_types) { | ||
for (const auto output_buffer_type : output_buffer_types) { | ||
try { | ||
//////////////////////////////////////////////////////////////////////////// | ||
// Device Setup | ||
//////////////////////////////////////////////////////////////////////////// | ||
int device_id = 0; | ||
tt_metal::Device *device = tt_metal::CreateDevice(device_id); | ||
|
||
//////////////////////////////////////////////////////////////////////////// | ||
// Parameters Setup | ||
//////////////////////////////////////////////////////////////////////////// | ||
const bool is_autoformat = run_type == "autoformat"; | ||
const auto nan = std::numeric_limits<float>::quiet_NaN(); | ||
|
||
// input | ||
auto input_data = tt::numpy::random::random(input_shape); | ||
auto input = is_autoformat ? input_data.pad_to_tile(nan).to(device) | ||
: input_data.pad_to_tile(nan).to(Layout::TILE).to(device); | ||
|
||
log_info( | ||
LogTest, | ||
"N: {}, C: {}, H: {}, W: {}.", | ||
input_shape[0], | ||
input_shape[1], | ||
input_shape[2], | ||
input_shape[3]); | ||
|
||
log_info(LogTest, "normalized_dims: {}", normalized_dims); | ||
|
||
// gamma_beta_shape | ||
Shape gamma_beta_shape = {1, 1, 1, 1}; | ||
const uint32_t input_dim = input_shape.size(); | ||
for (uint32_t i = 0; i < normalized_dims; ++i) { | ||
const int64_t dim = input_dim - i - 1; | ||
gamma_beta_shape[dim] = input_shape[dim]; | ||
} | ||
|
||
// gamma | ||
auto gamma_data = tt::numpy::zeros(gamma_beta_shape); | ||
auto gamma = is_autoformat ? gamma_data.pad_to_tile(nan).to(device) | ||
: gamma_data.pad_to_tile(nan).to(Layout::TILE).to(device); | ||
|
||
// beta | ||
auto beta_data = tt::numpy::ones(gamma_beta_shape); | ||
auto beta = is_autoformat ? beta_data.pad_to_tile(nan).to(device) | ||
: beta_data.pad_to_tile(nan).to(Layout::TILE).to(device); | ||
|
||
// Validation | ||
auto expected = tt::numpy::ones(input_shape); | ||
|
||
// y * 0 + 1 | ||
log_info(LogTest, "{} test start.", run_type); | ||
auto actual_npu = is_autoformat ? tt_metal::moreh_layernorm( | ||
input, | ||
normalized_dims, | ||
1e-5f, | ||
gamma, | ||
beta, | ||
std::nullopt, | ||
std::nullopt, | ||
{.buffer_type = output_buffer_type}) | ||
: operations::primary::moreh_layernorm( | ||
input, | ||
normalized_dims, | ||
1e-5f, | ||
gamma, | ||
beta, | ||
std::nullopt, | ||
std::nullopt, | ||
{.buffer_type = output_buffer_type}); | ||
|
||
pass &= actual_npu.buffer()->buffer_type() == output_buffer_type; | ||
|
||
auto actual = actual_npu.cpu().to(Layout::ROW_MAJOR).unpad_from_tile(input_shape); | ||
|
||
pass &= CloseDevice(device); | ||
pass &= tt::numpy::allclose<bfloat16>(actual, expected); | ||
if (pass) { | ||
log_info(LogTest, "{} test passed.", run_type); | ||
} else { | ||
TT_THROW("{} test failed.", run_type); | ||
} | ||
} catch (const std::exception &e) { | ||
pass = false; | ||
log_error(LogTest, "{}", e.what()); | ||
log_error(LogTest, "System error message: {}", std::strerror(errno)); | ||
} | ||
} // output_buffer_type | ||
} // run_type | ||
} // normalized_dims | ||
} // input_shape | ||
|
||
if (pass) { | ||
log_info(LogTest, "Test Passed"); | ||
} else { | ||
TT_THROW("Test Failed"); | ||
} | ||
|
||
TT_ASSERT(pass); | ||
|
||
return 0; | ||
} |
Oops, something went wrong.