Skip to content

Commit

Permalink
Prod backward sweep (#14884)
Browse files Browse the repository at this point in the history
New sweeps:
- prod_bw
  • Loading branch information
npetrovic-tenstorrent authored Nov 9, 2024
1 parent 23c3b81 commit 2f69888
Show file tree
Hide file tree
Showing 2 changed files with 113 additions and 0 deletions.
1 change: 1 addition & 0 deletions .github/workflows/ttnn-run-sweeps.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -263,6 +263,7 @@ on:
- eltwise.ternary_backward.addcmul_bw
- eltwise.ternary_backward.addcdiv_bw
- embedding.embedding
- reduction.backward.prod_bw.prod_bw
- reduction.topk.topk
- reduction.argmax.argmax
- reduction.prod
Expand Down
112 changes: 112 additions & 0 deletions tests/sweep_framework/sweeps/reduction/backward/prod_bw/prod_bw.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc.

# SPDX-License-Identifier: Apache-2.0

from typing import Optional, Tuple
from functools import partial

import torch
import random
import ttnn
from tests.sweep_framework.sweep_utils.utils import gen_shapes, sanitize_shape_rm
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt

from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time
from models.utility_functions import torch_random

# Override the default timeout in seconds for hang detection.
TIMEOUT = 30

random.seed(0)


# Parameters provided to the test vector generator are defined here.
# They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values.
# Each suite has a key name (in this case "suite_1" and "suite_2") which will associate the test vectors to this specific suite of inputs.
# Developers can create their own generator functions and pass them to the parameters as inputs.
parameters = {
"xfail": {
"input_shape": gen_shapes([1, 1, 32, 32], [6, 12, 256, 256], [1, 1, 32, 32], 16)
+ gen_shapes([1, 1, 1, 1], [6, 12, 256, 256], [1, 1, 1, 1], 2),
"dim": [0, 1, 2, 3],
"grad_dtype": [ttnn.bfloat16, ttnn.bfloat8_b],
"input_a_dtype": [ttnn.bfloat16],
"input_layout": [ttnn.TILE_LAYOUT],
"grad_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
"input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG],
}
}


# Invalidate vector is called during the generation phase where each vector will be passed in.
# If invalidated, the vector will still be stored but will be skipped.
# Returns False, None if the vector is valid, and True, str with a reason for invalidation if it is invalid.
def invalidate_vector(test_vector) -> Tuple[bool, Optional[str]]:
if test_vector["input_layout"] == ttnn.ROW_MAJOR_LAYOUT:
return True, "Unary operation requires tensor to be in Tile layout when working with non-sharded input tensor"
if test_vector["input_layout"] == ttnn.ROW_MAJOR_LAYOUT and (
test_vector["grad_dtype"] == ttnn.bfloat8_b or test_vector["input_a_dtype"] == ttnn.bfloat8_b
):
return True, "bfloat8_b is only supported on tiled layout"
return False, None


# This is the run instructions for the test, defined by the developer.
# The run function must take the above-defined parameters as inputs.
# The runner will call this run function with each test vector, and the returned results from this function will be stored.
# If you defined a mesh_device_fixture above, the object you yielded will be passed into this function as 'device'. pOtherwise, it will be the default ttnn device opened by the infra.
def run(
input_shape,
dim,
grad_dtype,
input_a_dtype,
input_layout,
grad_memory_config,
input_a_memory_config,
output_memory_config,
*,
device,
) -> list:
data_seed = random.randint(0, 20000000)
torch.manual_seed(data_seed)

torch_input_tensor_a = gen_func_with_cast_tt(
partial(torch_random, low=0, high=100, dtype=torch.float32), input_a_dtype
)(input_shape)
torch_input_tensor_a.requires_grad = True
torch_input_tensor_a.retain_grad()

max_dim = len(input_shape) - 1
dim = random.randint(-max_dim - 1, max_dim)

intermediate_result = torch.prod(torch_input_tensor_a, dim=dim, keepdim=True)
torch_grad_tensor = gen_func_with_cast_tt(
partial(torch_random, low=-100, high=100, dtype=torch.float32), grad_dtype
)(intermediate_result.shape)

intermediate_result.backward(gradient=torch_grad_tensor)
torch_output_tensor = torch_input_tensor_a.grad

grad_tensor = ttnn.from_torch(
torch_grad_tensor,
dtype=grad_dtype,
layout=input_layout,
device=device,
memory_config=grad_memory_config,
)

input_tensor_a = ttnn.from_torch(
torch_input_tensor_a,
dtype=input_a_dtype,
layout=input_layout,
device=device,
memory_config=input_a_memory_config,
)

start_time = start_measuring_time()
output_tensor = ttnn.prod_bw(grad_tensor, input_tensor_a, dim=dim, memory_config=output_memory_config)[0]
output_tensor = ttnn.to_torch(output_tensor)
e2e_perf = stop_measuring_time(start_time)

return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf]

0 comments on commit 2f69888

Please sign in to comment.