-
Notifications
You must be signed in to change notification settings - Fork 74
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
#14710: Subtract op Sweep for failing cases
- Loading branch information
1 parent
62255a8
commit 1d5bb9f
Showing
2 changed files
with
105 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
104 changes: 104 additions & 0 deletions
104
tests/sweep_framework/sweeps/eltwise/binary/subtract/subtract_tensor_fails.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
# SPDX-FileCopyrightText: © 2024 Tenstorrent Inc. | ||
|
||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import Optional, Tuple | ||
from functools import partial | ||
|
||
import torch | ||
import random | ||
import ttnn | ||
from tests.sweep_framework.sweep_utils.utils import gen_shapes | ||
from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt | ||
|
||
from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time | ||
from models.utility_functions import torch_random | ||
|
||
TIMEOUT = 30 | ||
|
||
random.seed(0) | ||
|
||
|
||
parameters = { | ||
"nightly": { | ||
"input_specs": [ | ||
{"shape": [0, 1], "other": [0, 1]}, | ||
{"shape": [0], "other": [0]}, | ||
{"shape": [1, 10], "other": [10, 1]}, | ||
{"shape": [1, 15], "other": [15, 1]}, | ||
{"shape": [1, 17], "other": [17, 1]}, | ||
{"shape": [1, 2], "other": [2, 1]}, | ||
{"shape": [16, 1, 49], "other": [16, 49, 1]}, | ||
{"shape": [16, 1, 64], "other": [16, 64, 1]}, | ||
{"shape": [24, 1], "other": [1, 24]}, | ||
{"shape": [4, 1, 49], "other": [4, 49, 1]}, | ||
{"shape": [4, 1, 64], "other": [4, 64, 1]}, | ||
{"shape": [64, 1, 49], "other": [64, 49, 1]}, | ||
{"shape": [64, 1, 64], "other": [64, 64, 1]}, | ||
], | ||
"input_a_dtype": [ttnn.bfloat16], | ||
"input_b_dtype": [ttnn.bfloat16], | ||
"input_a_layout": [ttnn.TILE_LAYOUT], | ||
"input_b_layout": [ttnn.TILE_LAYOUT], | ||
"input_a_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
"input_b_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
"output_memory_config": [ttnn.DRAM_MEMORY_CONFIG, ttnn.L1_MEMORY_CONFIG], | ||
}, | ||
} | ||
|
||
|
||
def run( | ||
input_specs, | ||
input_a_dtype, | ||
input_b_dtype, | ||
input_a_layout, | ||
input_b_layout, | ||
input_a_memory_config, | ||
input_b_memory_config, | ||
output_memory_config, | ||
*, | ||
device, | ||
) -> list: | ||
data_seed = random.randint(0, 20000000) | ||
torch.manual_seed(data_seed) | ||
|
||
input_shape = input_specs["shape"] | ||
torch_input_tensor_a = gen_func_with_cast_tt( | ||
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_a_dtype | ||
)(input_shape) | ||
|
||
other = input_specs["other"] | ||
if isinstance(other, (int, float)): | ||
torch_other_tensor = torch.tensor(other, dtype=torch.float32) | ||
else: | ||
torch_other_tensor = gen_func_with_cast_tt( | ||
partial(torch_random, low=-100, high=100, dtype=torch.float32), input_b_dtype | ||
)(other) | ||
|
||
golden_function = ttnn.get_golden_function(ttnn.sub) | ||
torch_output_tensor = golden_function(torch_input_tensor_a, torch_other_tensor) | ||
|
||
input_tensor_a = ttnn.from_torch( | ||
torch_input_tensor_a, | ||
dtype=input_a_dtype, | ||
layout=input_a_layout, | ||
device=device, | ||
memory_config=input_a_memory_config, | ||
) | ||
|
||
input_tensor_b = ttnn.from_torch( | ||
torch_other_tensor, | ||
dtype=input_b_dtype, | ||
layout=input_b_layout, | ||
device=device, | ||
memory_config=input_b_memory_config, | ||
) | ||
|
||
start_time = start_measuring_time() | ||
|
||
output_tensor = ttnn.subtract(input_tensor_a, input_tensor_b, memory_config=output_memory_config) | ||
output_tensor = ttnn.to_torch(output_tensor) | ||
|
||
e2e_perf = stop_measuring_time(start_time) | ||
|
||
return [check_with_pcc(torch_output_tensor, output_tensor, 0.999), e2e_perf] |