Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Tests for transpose op #711

Draft
wants to merge 1 commit into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions forge/test/operators/pytorch/tm/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent AI ULC

# SPDX-License-Identifier: Apache-2.0
282 changes: 282 additions & 0 deletions forge/test/operators/pytorch/tm/test_transpose.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,282 @@
# SPDX-FileCopyrightText: © 2024 Tenstorrent AI ULC

# SPDX-License-Identifier: Apache-2.0
#
# Tests for testing of transpose operators
#
# In this test we test pytorch transpose operator

# GENERAL OP SUPPORT TEST PLAN:
# 1. Operand type - any supported type
# 2. Operand source(s):
# (+) 2.1 From another op
# - Operator -> input
# (+) 2.2 From DRAM queue
# - Operator is first node in network
# - Input_queue flag = false
# (+) 2.3 Const Inputs (const eval pass)
# - Operator where all inputs are constants.
# (+) 2.4 From host
# - Input tensor as input of network
# - Operator is first node in network
# - Input_queue flag = true
# 3 Operand shapes type(s):
# (+) 3.1 Full tensor (i.e. full expected shape)
# - 3-4 by default P1 (high prioriy)
# - 2, 5, ++ include P2 (lower prioriy)
# (+) 3.2 Tensor reduce on one or more dims to 1
# - Vector
# - Only one dim is not equal to 1
# (+) 3.3 Scalar P2
# - Create tensor of dimension equal to 0 (tensor from scalar) or just to use scalar as simple value
# 4. Operand / output size of dimensions (few examples of each, 10 values total)
# (+) 4.1 Divisible by 32
# (+) 4.2 Prime numbers
# (+) 4.3 Very large (thousands, 10s of thousands)
# - 100x100, 100x1000
# - maybe nightly only
# (+) 4.4 Extreme ratios between height/width
# 4.5 ...probably many more interesting combinations here
# 5. Data format - all supported formats
# (/) 5.1 Output DF
# (/) 5.2 Intermediate DF
# (/) 5.3 Accumulation DF
# (+) 5.4 Operand DFs
# - Fix HiFi4 for math fidelity value
# (+) 6. Math fidelity - LoFi, HiFi2a, Hifi2b, Hifi3, Hifi4
# - Fix fp16b (default) for data format value
# (/) 7. Special attributes - if applicable.. like approx_mode for Exp, for example
# (/) 8. Special cases - if applicable
# 9. Variable number of operands - if applicable
# (/) Few representative values
# (/) Reuse inputs for selected operators


import pytest

from typing import List, Dict, Type, Optional, Any
from loguru import logger

import torch
import forge
import forge.op


from test.operators.utils import InputSourceFlags, VerifyUtils
from test.operators.utils import ShapeUtils
from test.operators.utils import InputSource
from test.operators.utils import TestVector
from test.operators.utils import TestPlan
from test.operators.utils import FailingReasons
from test.operators.utils.compat import TestDevice
from test.operators.utils import TestCollection
from test.operators.utils import TestCollectionCommon


class ModelFromAnotherOp(torch.nn.Module):

model_name = "model_op_src_from_another_op"

def __init__(self, operator, opname, shape, kwargs):
super(ModelFromAnotherOp, self).__init__()
self.testname = "Transpose_pytorch_operator_" + opname + "_test_op_src_from_another_op"
self.operator = operator
self.opname = opname
self.shape = shape
self.kwargs = kwargs

def forward(self, x: torch.Tensor):
# we use Add operator to create one operand which is input for the transpose operator
add = torch.add(x, x)
output = self.operator(add, **self.kwargs)
return output


class ModelDirect(torch.nn.Module):

model_name = "model_op_src_from_host"

def __init__(self, operator, opname, shape, kwargs):
super(ModelDirect, self).__init__()
self.testname = "Transpose_pytorch_operator_" + opname + "_test_op_src_from_host"
self.operator = operator
self.opname = opname
self.shape = shape
self.kwargs = kwargs

def forward(self, x: torch.Tensor):
output = self.operator(x, **self.kwargs)
return output


class ModelConstEvalPass(torch.nn.Module):

model_name = "model_op_src_const_eval_pass"

def __init__(self, operator, opname, shape, kwargs):
super(ModelConstEvalPass, self).__init__()
self.testname = "Transpose_pytorch_operator_" + opname + "_test_op_src_const_eval_pass"
self.operator = operator
self.opname = opname
self.shape = shape
self.kwargs = kwargs

self.c1 = torch.rand(*self.shape) - 0.5

def forward(self, x: torch.Tensor):
v1 = self.operator(self.c1, **self.kwargs)
v2 = self.operator(x, **self.kwargs)
# add consume inputs
add = torch.add(v1, v2)
return add


class TestVerification:

MODEL_TYPES = {
InputSource.FROM_ANOTHER_OP: ModelFromAnotherOp,
InputSource.FROM_HOST: ModelDirect,
InputSource.FROM_DRAM_QUEUE: ModelDirect,
InputSource.CONST_EVAL_PASS: ModelConstEvalPass,
}

@classmethod
def verify(
cls,
test_device: TestDevice,
test_vector: TestVector,
number_of_operands: int = 1,
input_params: List[Dict] = [],
warm_reset: bool = False,
):
"""Common verification function for all tests"""

input_source_flag: InputSourceFlags = None
if test_vector.input_source in (InputSource.FROM_DRAM_QUEUE,):
input_source_flag = InputSourceFlags.FROM_DRAM

operator = getattr(torch, test_vector.operator)

kwargs = test_vector.kwargs if test_vector.kwargs else {}

model_type = cls.MODEL_TYPES[test_vector.input_source]
pytorch_model = model_type(
operator=operator,
opname=test_vector.operator,
shape=test_vector.input_shape,
kwargs=kwargs,
)

input_shapes = tuple([test_vector.input_shape for _ in range(number_of_operands)])

logger.trace(f"***input_shapes: {input_shapes}")

VerifyUtils.verify(
model=pytorch_model,
test_device=test_device,
input_shapes=input_shapes,
input_params=input_params,
input_source_flag=input_source_flag,
dev_data_format=test_vector.dev_data_format,
math_fidelity=test_vector.math_fidelity,
pcc=test_vector.pcc,
warm_reset=warm_reset,
)


class TestParamsData:

__test__ = False # Avoid collecting TestParamsData as a pytest test

test_plan: TestPlan = None

@classmethod
def generate_kwargs(cls, test_vector: TestVector):
size = len(test_vector.input_shape)
kwarg_list = []
for dim0 in list(range(0, size, 1)):
for dim1 in list(range(dim0 + 1, size, 1)):
kwargs = {}
kwargs["dim0"] = dim0
kwargs["dim1"] = dim1
kwarg_list.append(kwargs)
return kwarg_list


class TestCollectionData:

__test__ = False # Avoid collecting TestCollectionData as a pytest test

all = TestCollection(
operators=[
"transpose", # 00
],
input_sources=TestCollectionCommon.all.input_sources,
input_shapes=TestCollectionCommon.all.input_shapes,
dev_data_formats=TestCollectionCommon.all.dev_data_formats,
math_fidelities=TestCollectionCommon.all.math_fidelities,
)

single = TestCollection(
input_sources=TestCollectionCommon.single.input_sources,
input_shapes=TestCollectionCommon.single.input_shapes,
dev_data_formats=TestCollectionCommon.single.dev_data_formats,
math_fidelities=TestCollectionCommon.single.math_fidelities,
)


TestParamsData.test_plan = TestPlan(
verify=lambda test_device, test_vector: TestVerification.verify(
test_device,
test_vector,
),
collections=[
# Test plan:
# 2. Operand source(s):
# 3. Operand shapes type(s):
# 4. Operand / output size of dimensions
TestCollection(
operators=TestCollectionData.all.operators,
input_sources=TestCollectionData.all.input_sources,
input_shapes=TestCollectionData.all.input_shapes,
kwargs=lambda test_vector: TestParamsData.generate_kwargs(test_vector),
),
# Test plan:
# 5. Data format
TestCollection(
operators=TestCollectionData.all.operators,
input_sources=TestCollectionData.single.input_sources,
input_shapes=TestCollectionData.single.input_shapes,
kwargs=lambda test_vector: TestParamsData.generate_kwargs(test_vector),
dev_data_formats=[
item
for item in TestCollectionData.all.dev_data_formats
if item not in TestCollectionData.single.dev_data_formats
],
math_fidelities=TestCollectionData.single.math_fidelities,
),
# Test plan:
# 6. Math fidelity
TestCollection(
operators=TestCollectionData.all.operators,
input_sources=TestCollectionData.single.input_sources,
input_shapes=TestCollectionData.single.input_shapes,
kwargs=lambda test_vector: TestParamsData.generate_kwargs(test_vector),
dev_data_formats=TestCollectionData.single.dev_data_formats,
math_fidelities=TestCollectionData.all.math_fidelities,
),
],
failing_rules=[
# Skip all tests with input shapes with 2 dimensions
TestCollection(
criteria=lambda test_vector: len(test_vector.input_shape) == 2,
skip_reason=FailingReasons.NOT_IMPLEMENTED,
),
],
)


def get_test_plans() -> List[TestPlan]:
return [
TestParamsData.test_plan,
]
Loading