Skip to content

Add xfail to resnet and llama mlp (#709) #218

Add xfail to resnet and llama mlp (#709)

Add xfail to resnet and llama mlp (#709) #218

Triggered via push November 14, 2024 11:54
Status Success
Total duration 6m 22s
Artifacts 1

docs.yml

on: push
Matrix: build
Fit to window
Zoom out
Zoom in

Annotations

8 errors
test_ops.test_reduce_sum[-2-32]: forge/test/mlir/test_ops.py#L997
assert False + where False = compare_with_golden_pcc(golden=tensor([[[12.98380, 14.85077, 15.13578, 14.81507, 14.39325, 21.05881, 17.51353, 17.53561, 17.22881, 13.53382, 16.96490...85473, 18.85637, 14.06585, 18.08817, 14.25744, 15.29112, 18.49412, 14.98244, 16.59375, 12.74494,\n 18.84443]]]), calculated=tensor([[[ 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000...81250, 18.75000, 14.12500, 18.00000, 14.25000, 15.31250, 18.50000, 14.93750, 16.50000, 12.68750,\n 18.75000]]]), pcc=0.99)
test_ops.test_reduce_sum[-2-64]: forge/test/mlir/test_ops.py#L997
assert False + where False = compare_with_golden_pcc(golden=tensor([[[28.25267, 28.88086, 33.63762, 30.35632, 31.17035, 40.94534, 31.61906, 36.14229, 35.29586, 27.67534, 31.52222...85889, 32.37192, 25.42183, 35.24525, 27.94299, 31.94533, 34.62077, 31.95208, 32.68465,\n 34.39032, 34.69159]]]), calculated=tensor([[[ 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000...87500, 32.50000, 25.50000, 35.25000, 28.00000, 32.00000, 34.75000, 31.87500, 32.75000,\n 34.50000, 35.00000]]]), pcc=0.99)
test_ops.test_reduce_sum[-2-128]: forge/test/mlir/test_ops.py#L997
assert False + where False = compare_with_golden_pcc(golden=tensor([[[[58.75421, 63.25041, 68.31551, ..., 67.77272, 68.26454, 64.23260]],\n\n [[66.75616, 66.46822, 64.5744... ..., 71.19468, 71.09355, 71.80548]],\n\n [[64.50789, 64.79104, 60.27160, ..., 65.48389, 63.18176, 64.94083]]]]), calculated=tensor([[[[ 0.00000, 0.00000, 0.00000, ..., 68.00000, 68.00000, 64.00000]],\n\n [[ 0.00000, 0.00000, 0.0000... ..., 71.50000, 71.50000, 72.00000]],\n\n [[64.50000, 64.50000, 60.50000, ..., 65.50000, 63.25000, 65.00000]]]]), pcc=0.99)
test_ops.test_reduce_mean[-2-input_shape4]: forge/test/mlir/test_ops.py#L1042
assert False + where False = compare_with_golden_pcc(golden=tensor([[[0.44145, 0.45126, 0.52559, 0.47432, 0.48704, 0.63977, 0.49405, 0.56472, 0.55150, 0.43243, 0.49253, 0.52568, ...0.47594, 0.52517, 0.48217, 0.50581, 0.39722, 0.55071, 0.43661, 0.49915, 0.54095, 0.49925, 0.51070, 0.53735, 0.54206]]]), calculated=tensor([[[0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, ...0.47461, 0.52734, 0.48242, 0.50781, 0.39844, 0.55078, 0.43750, 0.50000, 0.54297, 0.49805, 0.51172, 0.53906, 0.54688]]]), pcc=0.99)
test_ops.test_reduce_max[2-input_shape1]: forge/test/mlir/test_ops.py#L1372
assert False + where False = compare_with_golden_pcc(golden=tensor([[[[0.99515, 0.99700, 0.95232, ..., 0.99915, 0.98834, 0.99917]],\n\n [[0.98533, 0.94390, 0.95252, ..., ...0.89165, ..., 0.98807, 0.98134, 0.97024]],\n\n [[0.98207, 0.95271, 0.94923, ..., 0.97693, 0.98546, 0.96302]]]]), calculated=tensor([[[[0.00000, 0.00000, 0.00000, ..., 0.00000, 0.00000, 0.00000]],\n\n [[0.00000, 0.00000, 0.00000, ..., ...0.89062, ..., 0.98438, 0.98047, 0.96875]],\n\n [[0.98047, 0.94922, 0.94922, ..., 0.97656, 0.98438, 0.96094]]]]), pcc=0.99)
test_ops.test_reduce_max[-2-input_shape0]: forge/test/mlir/test_ops.py#L1372
assert False + where False = compare_with_golden_pcc(golden=tensor([[[[0.99911, 0.99984, 0.98537, ..., 0.98491, 0.98926, 0.97888]],\n\n [[0.99090, 0.99542, 0.99725, ..., ...0.98053, ..., 0.96964, 0.99947, 0.98577]],\n\n [[0.98660, 0.97695, 0.99862, ..., 0.99473, 0.96240, 0.99360]]]]), calculated=tensor([[[[0.00000, 0.00000, 0.00000, ..., 0.98438, 0.98828, 0.97656]],\n\n [[0.98828, 0.99219, 0.99609, ..., ...0.98047, ..., 0.96875, 0.99609, 0.98438]],\n\n [[0.98438, 0.97656, 0.99609, ..., 0.99219, 0.96094, 0.99219]]]]), pcc=0.99)
test_ops.test_reduce_max[-2-input_shape1]: forge/test/mlir/test_ops.py#L1372
assert False + where False = compare_with_golden_pcc(golden=tensor([[[[0.99515, 0.99700, 0.95232, ..., 0.99915, 0.98834, 0.99917]],\n\n [[0.98533, 0.94390, 0.95252, ..., ...0.89165, ..., 0.98807, 0.98134, 0.97024]],\n\n [[0.98207, 0.95271, 0.94923, ..., 0.97693, 0.98546, 0.96302]]]]), calculated=tensor([[[[0.00000, 0.00000, 0.00000, ..., 0.00000, 0.00000, 0.00000]],\n\n [[0.00000, 0.00000, 0.00000, ..., ...0.89062, ..., 0.98438, 0.98047, 0.96875]],\n\n [[0.98047, 0.94922, 0.94922, ..., 0.97656, 0.98438, 0.96094]]]]), pcc=0.99)
test_ops.test_reduce_max[-2-input_shape3]: forge/test/mlir/test_ops.py#L1372
assert False + where False = compare_with_golden_pcc(golden=tensor([[[0.93510, 0.99917, 0.95369, 0.90248, 0.99981, 0.96301, 0.97367, 0.95143, 0.99700, 0.91240, 0.97146, 0.98831, ....89559, 0.98399, 0.94904, 0.99586, 0.98501, 0.98665, 0.98278, 0.98316, 0.97870,\n 0.80503, 0.98913, 0.96008]]]), calculated=tensor([[[0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, ....89453, 0.98047, 0.94531, 0.99219, 0.98438, 0.98438, 0.98047, 0.98047, 0.97656,\n 0.80469, 0.98828, 0.95703]]]), pcc=0.99)

Artifacts

Produced during runtime
Name Size
github-pages Expired
1.36 MB