Skip to content
/ prml Public
forked from gerdm/prml

Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

License

Notifications You must be signed in to change notification settings

tdp1996/prml

 
 

Repository files navigation

Pattern Recognition and Machine Learning (PRML)

MDN

nbviewer

This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Pattern Recognition and Machine Learning book, as well as replicas for many of the graphs presented in the book.

Discussions (new)

If you have any questions and/or requests, check out the discussions page!

Useful Links

Content

.
├── README.md
├── chapter01
│   ├── einsum.ipynb
│   ├── exercises.ipynb
│   └── introduction.ipynb
├── chapter02
│   ├── Exercises.ipynb
│   ├── bayes-binomial.ipynb
│   ├── bayes-normal.ipynb
│   ├── density-estimation.ipynb
│   ├── exponential-family.ipynb
│   ├── gamma-distribution.ipynb
│   ├── mixtures-of-gaussians.ipynb
│   ├── periodic-variables.ipynb
│   ├── robbins-monro.ipynb
│   └── students-t-distribution.ipynb
├── chapter03
│   ├── bayesian-linear-regression.ipynb
│   ├── equivalent-kernel.ipynb
│   ├── evidence-approximation.ipynb
│   ├── linear-models-for-regression.ipynb
│   ├── ml-vs-map.ipynb
│   ├── predictive-distribution.ipynb
│   └── sequential-bayesian-learning.ipynb
├── chapter04
│   ├── exercises.ipynb
│   ├── fisher-linear-discriminant.ipynb
│   ├── least-squares-classification.ipynb
│   ├── logistic-regression.ipynb
│   └── perceptron.ipynb
├── chapter05
│   ├── backpropagation.ipynb
│   ├── bayesian-neural-networks.ipynb
│   ├── ellipses.ipynb
│   ├── imgs
│   │   └── f51.png
│   ├── mixture-density-networks.ipynb
│   ├── soft-weight-sharing.ipynb
│   └── weight-space-symmetry.ipynb
├── chapter06
│   ├── gaussian-processes.ipynb
│   └── kernel-regression.ipynb
├── chapter07
│   ├── relevance-vector-machines.ipynb
│   └── support-vector-machines.ipynb
├── chapter08
│   ├── exercises.ipynb
│   ├── graphical-model-inference.ipynb
│   ├── img.jpeg
│   ├── markov-random-fields.ipynb
│   ├── sum-product.ipynb
│   └── trees.ipynb
├── chapter09
│   ├── gaussian-mixture-models.ipynb
│   ├── k-means.ipynb
│   └── mixture-of-bernoulli.ipynb
├── chapter10
│   ├── exponential-mixture-gaussians.ipynb
│   ├── local-variational-methods.ipynb
│   ├── mixture-gaussians.ipynb
│   ├── variational-logistic-regression.ipynb
│   └── variational-univariate-gaussian.ipynb
├── chapter11
│   ├── adaptive-rejection-sampling.ipynb
│   ├── gibbs-sampling.ipynb
│   ├── hybrid-montecarlo.ipynb
│   ├── markov-chain-motecarlo.ipynb
│   ├── rejection-sampling.ipynb
│   ├── slice-sampling.ipynb
│   └── transformation-random-variables.ipynb
├── chapter12
│   ├── bayesian-pca.ipynb
│   ├── kernel-pca.ipynb
│   ├── ppca.py
│   ├── principal-component-analysis.ipynb
│   └── probabilistic-pca.ipynb
├── chapter13
│   ├── em-hidden-markov-model.ipynb
│   ├── hidden-markov-model.ipynb
│   └── linear-dynamical-system.ipynb
├── chapter14
│   ├── CART.ipynb
│   ├── boosting.ipynb
│   ├── cmm-linear-regression.ipynb
│   ├── cmm-logistic-regression.ipynb
│   └── tree.py
└── misc
    └── tikz
        ├── ch13-hmm.tex
        └── ch8-sum-product.tex

17 directories, 73 files

About

Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.9%
  • Other 0.1%