This repository provides a PyTorch implementation of DDiffPG.
-
Clone the package:
git clone [email protected]:ddiffpg.git cd ddiffpg
-
Create Conda environment and install dependencies:
conda env create -f environment.yml conda activate ddiffpg
-
Install MuJoCo 210.
-
Install D4RL.
-
Install panda-gym
-
Install DDiffPG.
pip install -e .
We use Weights & Biases (W&B) for logging.
-
Get a W&B account from https://wandb.ai/site
-
Get your API key from https://wandb.ai/authorize
-
set up your account in terminal
export WANDB_API_KEY=$API Key$
Run DDiffPG on AntMaze tasks.
python scripts/ddiffpg_main.py algo=ddiffpg_algo env.name=antmaze-v1
Run DIPO baseline
python scripts/baselines_main.py algo=dipo_algo env.name=antmaze-v1
Run SAC baseline
python scripts/baselines_main.py algo=sac_algo env.name=antmaze-v1
Checkpoints are automatically saved as W&B Artifacts.