NMR eXchange Peak SHAPE simulation of the Bloch-McConnell equation
- Ulrich L. Gunther and Brian Schaffhausen (2002), J. Biomol. NMR 22, 201-209. NMRKIN: Simulating line shapes from two-dimensional spectra of proteins upon ligand binding.
- Hiroshi Matsuo et al. (1999) J. Am. Chem. Soc 121, 9903-9904. Identification by NMR Spectroscopy of Residues at Contact Surfaces in Large, Slowly Exchanging Macromolecular Complexes
- Harden M. McConnell (1958) J. Chem. Physics. 28, 430-431. Reaction Rates by Nuclear Magnetic Resonance
$ cd source
$ make
Usage: xpshape [-model AB|ACB] [-dw #(Hz)] [-kab #(1/s)] [-kba #(1/s)] [-R20a #(1/s)] [-R20b #(1/s)] [-a0 conc(M)] [-c0 conc(M)] [-swh Hz(600)] [-fid pts(8192)] simulate NMR peakshape for two-site chemical exchange -model,AB : A = B (dw,kab,kba,R20a,R20b required) ACB : A + C = B (dw,kab,kba,R20a,R20b,a0,c0 required) -dw, (A.frequency= -dw/2, B.frequency= +dw/2) -R20a,(exchange-free R2 of A state) -R20b,(exchange-free R2 of B state) -kab, (rate constant of A->B) -kba, (rate constant of B->A) -a0, (initial concentration of A) -c0, (initial concentration of C) -swh, (spectrum = -swh/2 ... +swh/2) -fid, (must be ...,1024,2048,4096,8192,16384,32768,65536,..)
# Kd=10mM, [P]=2uM, [L]=5-200uM ./xpshape -model ACB -dw 100 -kab 1e+6 -kba 1e+4 -R20a 0.1 -R20b 150 -a0 2e-6 -c0 5e-6 > tins.Kd.10mM.dat ./xpshape -model ACB -dw 100 -kab 1e+6 -kba 1e+4 -R20a 0.1 -R20b 150 -a0 2e-6 -c0 10e-6 >> tins.Kd.10mM.dat ./xpshape -model ACB -dw 100 -kab 1e+6 -kba 1e+4 -R20a 0.1 -R20b 150 -a0 2e-6 -c0 20e-6 >> tins.Kd.10mM.dat ./xpshape -model ACB -dw 100 -kab 1e+6 -kba 1e+4 -R20a 0.1 -R20b 150 -a0 2e-6 -c0 50e-6 >> tins.Kd.10mM.dat ./xpshape -model ACB -dw 100 -kab 1e+6 -kba 1e+4 -R20a 0.1 -R20b 150 -a0 2e-6 -c0 100e-6 >> tins.Kd.10mM.dat ./xpshape -model ACB -dw 100 -kab 1e+6 -kba 1e+4 -R20a 0.1 -R20b 150 -a0 2e-6 -c0 200e-6 >> tins.Kd.10mM.dat # Kd=10uM, [P]=2uM, [L]=5-200uM ./xpshape -model ACB -dw 100 -kab 1e+6 -kba 1e+1 -R20a 0.1 -R20b 150 -a0 2e-6 -c0 5e-6 > tins.Kd.10uM.dat ./xpshape -model ACB -dw 100 -kab 1e+6 -kba 1e+1 -R20a 0.1 -R20b 150 -a0 2e-6 -c0 10e-6 >> tins.Kd.10uM.dat ./xpshape -model ACB -dw 100 -kab 1e+6 -kba 1e+1 -R20a 0.1 -R20b 150 -a0 2e-6 -c0 20e-6 >> tins.Kd.10uM.dat ./xpshape -model ACB -dw 100 -kab 1e+6 -kba 1e+1 -R20a 0.1 -R20b 150 -a0 2e-6 -c0 50e-6 >> tins.Kd.10uM.dat ./xpshape -model ACB -dw 100 -kab 1e+6 -kba 1e+1 -R20a 0.1 -R20b 150 -a0 2e-6 -c0 100e-6 >> tins.Kd.10uM.dat ./xpshape -model ACB -dw 100 -kab 1e+6 -kba 1e+1 -R20a 0.1 -R20b 150 -a0 2e-6 -c0 200e-6 >> tins.Kd.10uM.dat
# peak shape simulation [A + C = B] # dw = 628.319 (rad/s) # kab = 1e+06 (1/s) # kba = 10000 (1/s) # R20a = 0.1 (1/s) # R20b = 150 (1/s) # kon = 1e+06 (1/s) # koff = 10000 (1/s) # Kd = 0.01 (M) # pb = 0.00049965 # [A]ini = 2e-06 (M) # [C]ini = 5e-06 (M) # [A] = 1.999e-06 (M) # [C] = 4.999e-06 (M) # [B] = 9.99301e-10 (M) # FID = 8192 (complex points) # SWH = 600 (Hz) # X-axis unit: (Hz) -300 0.00512234 -299.927 0.00512234 -299.854 0.00512233 -299.78 0.00512232 ...... omitted ......