Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

vcncnnUpdate Chatbot.py #67

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 49 additions & 29 deletions Chatbot.py
Original file line number Diff line number Diff line change
@@ -1,29 +1,49 @@
from openai import OpenAI
import streamlit as st

with st.sidebar:
openai_api_key = st.text_input("OpenAI API Key", key="chatbot_api_key", type="password")
"[Get an OpenAI API key](https://platform.openai.com/account/api-keys)"
"[View the source code](https://github.com/streamlit/llm-examples/blob/main/Chatbot.py)"
"[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/streamlit/llm-examples?quickstart=1)"

st.title("💬 Chatbot")
st.caption("🚀 A Streamlit chatbot powered by OpenAI")
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}]

for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])

if prompt := st.chat_input():
if not openai_api_key:
st.info("Please add your OpenAI API key to continue.")
st.stop()

client = OpenAI(api_key=openai_api_key)
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
response = client.chat.completions.create(model="gpt-3.5-turbo", messages=st.session_state.messages)
msg = response.choices[0].message.content
st.session_state.messages.append({"role": "assistant", "content": msg})
st.chat_message("assistant").write(msg)
# Simulate a geospatial heatmap and predictive simulation for the enhanced dashboard

import geopandas as gpd
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

# Mock data for regions with adherence rates and infection projections
regions = {
"Region A": {"adherence": 85, "projected_infection": 5, "lat": 0.1, "lon": 36.8},
"Region B": {"adherence": 78, "projected_infection": 10, "lat": 1.3, "lon": 36.9},
"Region C": {"adherence": 65, "projected_infection": 25, "lat": -1.5, "lon": 37.1},
"Region D": {"adherence": 90, "projected_infection": 2, "lat": 0.8, "lon": 37.3},
}

# Convert mock data into a GeoDataFrame
data = {
"Region": list(regions.keys()),
"Adherence": [regions[reg]["adherence"] for reg in regions],
"Projected_Infection": [regions[reg]["projected_infection"] for reg in regions],
"Latitude": [regions[reg]["lat"] for reg in regions],
"Longitude": [regions[reg]["lon"] for reg in regions],
}
gdf = gpd.GeoDataFrame(data, geometry=gpd.points_from_xy(data["Longitude"], data["Latitude"]))

# Set up map plotting with adherence heatmap
fig, ax = plt.subplots(1, 2, figsize=(16, 8))

# Heatmap for adherence rates
cmap = ListedColormap(["red", "orange", "green"])
categories = [65, 75, 100] # Categories for adherence
adherence_colors = ["red" if x < 70 else "orange" if x < 80 else "green" for x in gdf["Adherence"]]

gdf.plot(ax=ax[0], color=adherence_colors, markersize=100, edgecolor="black")
ax[0].set_title("Geospatial Adherence Rates", fontsize=14)
for x, y, label in zip(gdf["Longitude"], gdf["Latitude"], gdf["Region"]):
ax[0].text(x + 0.05, y, label, fontsize=10)

# Predicted Infection Simulation Bar
ax[1].bar(gdf["Region"], gdf["Projected_Infection"], color="blue")
ax[1].set_title("Predicted Infection Rate Increase (6 Months)", fontsize=14)
ax[1].set_ylabel("Predicted Increase (%)", fontsize=12)
for i, val in enumerate(gdf["Projected_Infection"]):
ax[1].text(i, val + 1, f"+{val}%", ha="center", fontsize=10)

# Overall Layout
plt.suptitle("ImpactLens AI: Enhanced Geospatial & Predictive Insights", fontsize=16, weight="bold")
plt.tight_layout(rect=[0, 0, 1, 0.95])

plt.show()