Skip to content

Commit

Permalink
update business cron job
Browse files Browse the repository at this point in the history
  • Loading branch information
MuslemRahimi committed Dec 18, 2024
1 parent 8f3f1c4 commit 32445f4
Showing 1 changed file with 154 additions and 23 deletions.
177 changes: 154 additions & 23 deletions app/cron_business_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,9 @@
load_dotenv()
api_key = os.getenv('FMP_API_KEY')

def standardize_strings(string_list):
return [string.title() for string in string_list]

def convert_to_dict(data):
result = {}

Expand All @@ -28,7 +31,113 @@ async def save_json(data, symbol):
with open(f"json/business-metrics/{symbol}.json", 'wb') as file:
file.write(orjson.dumps(data))

def prepare_dataset(data):
import orjson
from datetime import datetime

def convert_to_dict(data):
result = {}

for entry in data:
for date, categories in entry.items():
if date not in result:
result[date] = {}
for category, amount in categories.items():
result[date][category] = amount

return result

def prepare_expense_dataset(symbol):
# Define the list of key elements you want to track
expense_keys = [
'researchAndDevelopmentExpenses',
'generalAndAdministrativeExpenses',
'sellingAndMarketingExpenses',
'operatingExpenses',
'costOfRevenue'
]

# Open the financial statement data for the symbol
with open(f"json/financial-statements/income-statement/quarter/{symbol}.json", 'rb') as file:
data = orjson.loads(file.read())
# Convert the data into a dictionary

# Initialize a dictionary to hold the history and growth for each key
expense_data = {}

for key in expense_keys:
expense_data[key] = []

# Prepare the data for the current key
for entry in data:
date = entry.get('date')
value = entry.get(key, 0) # Default to 0 if the key is missing
expense_data[key].append({'date': date, 'value': value})

# Sort the list by date
expense_data[key] = sorted(expense_data[key], key=lambda x: datetime.strptime(x['date'], '%Y-%m-%d'))

# Initialize 'valueGrowth' as None for all entries
for item in expense_data[key]:
item['valueGrowth'] = None

# Calculate valueGrowth for each item based on the previous date value
for i in range(1, len(expense_data[key])):
try:
current_item = expense_data[key][i]
prev_item = expense_data[key][i - 1]
growth = round(((current_item['value'] - prev_item['value']) / prev_item['value']) * 100, 2) if prev_item['value'] != 0 else None
current_item['valueGrowth'] = growth
except:
current_item['valueGrowth'] = None

# Return the results as a dictionary with all keys
return expense_data

def prepare_geo_dataset(data):
data = convert_to_dict(data)
res_list = {}
geo_name_list = []
geo_history_list = []
index = 0
for date, info in data.items():
value_list = []
for name, val in info.items():
if index == 0:
geo_name_list.append(name)
if name in geo_name_list:
value_list.append(val)
if len(value_list) > 0:
geo_history_list.append({'date': date, 'value': value_list})
index +=1

geo_history_list = sorted(geo_history_list, key=lambda x: datetime.strptime(x['date'], '%Y-%m-%d'))

# Initialize 'valueGrowth' as None for all entries
for item in geo_history_list:
item['valueGrowth'] = [None] * len(item['value'])

# Calculate valueGrowth for each item based on the previous date value
for i in range(1, len(geo_history_list)): # Start from the second item
current_item = geo_history_list[i]
prev_item = geo_history_list[i - 1]

value_growth = []
for cur_value, prev_value in zip(current_item['value'], prev_item['value']):
try:
growth = round(((cur_value - prev_value) / prev_value) * 100, 2)
except:
growth = None
value_growth.append(growth)

current_item['valueGrowth'] = value_growth

geo_history_list = sorted(geo_history_list, key=lambda x: datetime.strptime(x['date'], '%Y-%m-%d'), reverse=True)

res_list = {'geographic': {'names': standardize_strings(geo_name_list), 'history': geo_history_list}}

return res_list

def prepare_dataset(data, geo_data, symbol):
data = convert_to_dict(data)
res_list = {}
revenue_name_list = []
Expand All @@ -45,10 +154,9 @@ def prepare_dataset(data):
revenue_history_list.append({'date': date, 'value': value_list})
index +=1


revenue_history_list = sorted(revenue_history_list, key=lambda x: datetime.strptime(x['date'], '%Y-%m-%d'))

# Initialize 'valueGrowth' as None for all entries
# Initialize 'valueGrowth' as None for all entries
for item in revenue_history_list:
item['valueGrowth'] = [None] * len(item['value'])

Expand All @@ -59,49 +167,72 @@ def prepare_dataset(data):

value_growth = []
for cur_value, prev_value in zip(current_item['value'], prev_item['value']):
growth = round(((cur_value - prev_value) / prev_value) * 100, 2)
try:
growth = round(((cur_value - prev_value) / prev_value) * 100, 2)
except:
growth = None
value_growth.append(growth)

current_item['valueGrowth'] = value_growth


revenue_history_list = sorted(revenue_history_list, key=lambda x: datetime.strptime(x['date'], '%Y-%m-%d'), reverse=True)


res_list = {'revenue': {'names': revenue_name_list, 'history': revenue_history_list}}

return res_list

geo_data = prepare_geo_dataset(geo_data)
#operating_expense_data = prepare_expense_dataset(symbol)

async def get_data(session, total_symbols):
for symbol in total_symbols:
url = f"https://financialmodelingprep.com/api/v4/revenue-product-segmentation?symbol={symbol}&structure=flat&period=quarter&apikey={api_key}"
try:
async with session.get(url) as response:
if response.status == 200:
data = await response.json()
if len(data) > 0:
data = prepare_dataset(data)
await save_json(data, symbol)

except Exception as e:
print(f"Error fetching data for {symbol}: {e}")
pass
#res_list = {**res_list, **geo_data, 'expense': operating_expense_data}
res_list = {**res_list, **geo_data}
return res_list

async def get_data(session, total_symbols):
batch_size = 300 # Process 300 symbols at a time
for i in tqdm(range(0, len(total_symbols), batch_size)):
batch = total_symbols[i:i+batch_size]
for symbol in batch:
product_data = []
geo_data = []

urls = [f"https://financialmodelingprep.com/api/v4/revenue-product-segmentation?symbol={symbol}&structure=flat&period=quarter&apikey={api_key}",
f"https://financialmodelingprep.com/api/v4/revenue-geographic-segmentation?symbol={symbol}&structure=flat&apikey={api_key}"
]

for url in urls:
try:
async with session.get(url) as response:
if response.status == 200:
data = await response.json()
if "product" in url:
product_data = data
else:
geo_data = data
except Exception as e:
print(f"Error fetching data for {symbol}: {e}")
pass

if len(product_data) > 0 and len(geo_data) > 0:
data = prepare_dataset(product_data, geo_data, symbol)
await save_json(data, symbol)

# Wait 60 seconds after processing each batch of 300 symbols
if i + batch_size < len(total_symbols):
print(f"Processed {i + batch_size} symbols, waiting 60 seconds...")
await asyncio.sleep(60)

async def run():
con = sqlite3.connect('stocks.db')
cursor = con.cursor()
cursor.execute("PRAGMA journal_mode = wal")
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
total_symbols = [row[0] for row in cursor.fetchall()]
total_symbols = ['AAPL'] # For testing purposes
total_symbols = ['TSLA'] # For testing purposes
con.close()

async with aiohttp.ClientSession() as session:
await get_data(session, total_symbols)


if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(run())

0 comments on commit 32445f4

Please sign in to comment.