Skip to content

Commit

Permalink
add analyst insight endpoint
Browse files Browse the repository at this point in the history
  • Loading branch information
MuslemRahimi committed Jul 7, 2024
1 parent acc8faa commit 0859e27
Show file tree
Hide file tree
Showing 7 changed files with 238 additions and 0 deletions.
113 changes: 113 additions & 0 deletions app/cron_analyst_insight.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
from openai import OpenAI
import time
import ujson
import sqlite3
import requests
import os
from dotenv import load_dotenv
from tqdm import tqdm
from datetime import datetime

# Load environment variables
load_dotenv()

# Initialize OpenAI client

benzinga_api_key = os.getenv('BENZINGA_API_KEY')

openai_api_key = os.getenv('OPENAI_API_KEY')
org_id = os.getenv('OPENAI_ORG')
client = OpenAI(
api_key=openai_api_key,
organization=org_id,
)


headers = {"accept": "application/json"}
url = "https://api.benzinga.com/api/v1/analyst/insights"


def save_json(symbol, data):
with open(f"json/analyst/insight/{symbol}.json", 'w') as file:
ujson.dump(data, file)

def get_analyst_insight(ticker):

res_dict = {}

try:
querystring = {"token": benzinga_api_key,"symbols": ticker}
response = requests.request("GET", url, params=querystring)
output = ujson.loads(response.text)['analyst-insights'][0] #get the latest insight only
# Extracting required fields
res_dict = {
'insight': output['analyst_insights'],
'id': output['id'],
'date': datetime.strptime(output['date'], "%Y-%m-%d").strftime("%b %d, %Y")
}
except:
pass

return res_dict


# Function to summarize the text using GPT-3.5-turbo
def get_summary(data):
# Define the data to be summarized

# Format the data as a string
data_string = (
f"Insights: {data['insight']}"
)

response = client.chat.completions.create(
model="gpt-3.5-turbo-0125",
messages=[
{"role": "system", "content": "Summarize analyst insights clearly and concisely in under 400 characters. Ensure the summary is professional and easy to understand. Conclude with whether the report is bullish or bearish."},
{"role": "user", "content": data_string}
],
max_tokens=150,
temperature=0.7
)


summary = response.choices[0].message.content
data = {
'insight': summary,
'id': data['id'],
'date': data['date']
}

return data


try:
stock_con = sqlite3.connect('stocks.db')
stock_cursor = stock_con.cursor()
stock_cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE marketCap >= 100E6 AND symbol NOT LIKE '%.%'")
stock_symbols = [row[0] for row in stock_cursor.fetchall()]


stock_con.close()

for symbol in tqdm(stock_symbols):
try:
data = get_analyst_insight(symbol)
new_report_id = data.get('id', '')
try:
with open(f"json/analyst/insight/{symbol}.json", 'r') as file:
old_report_id = ujson.load(file).get('id', '')
except:
old_report_id = ''
#check first if new report id exist already to save money before sending it to closedai company
if new_report_id != old_report_id and len(data['insight']) > 0:
res = get_summary(data)
save_json(symbol, res)
else:
print('skipped')
except:
pass


except Exception as e:
print(e)
19 changes: 19 additions & 0 deletions app/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -3020,6 +3020,25 @@ async def get_borrowed_share(data:TickerData):
redis_client.expire(cache_key, 3600*3600) # Set cache expiration time to 1 day
return res


@app.post("/analyst-insight")
async def get_analyst_insight(data:TickerData):
ticker = data.ticker.upper()
cache_key = f"analyst-insight-{ticker}"
cached_result = redis_client.get(cache_key)
if cached_result:
return ujson.loads(cached_result)
try:
with open(f"json/analyst/insight/{ticker}.json", 'r') as file:
res = ujson.load(file)
except:
res = {}

redis_client.set(cache_key, ujson.dumps(res))
redis_client.expire(cache_key, 3600*3600) # Set cache expiration time to 1 day
return res


@app.post("/implied-volatility")
async def get_clinical_trial(data:TickerData):
ticker = data.ticker.upper()
Expand Down
1 change: 1 addition & 0 deletions app/primary_cron_job.py
Original file line number Diff line number Diff line change
Expand Up @@ -270,6 +270,7 @@ def run_analyst_rating():
if week <= 5:
subprocess.run(["python3", "cron_analyst_db.py"])
subprocess.run(["python3", "cron_analyst_ticker.py"])
subprocess.run(["python3", "cron_analyst_insight.py"])
command = ["sudo", "rsync", "-avz", "-e", "ssh", "/root/backend/app/json/analyst", f"root@{useast_ip_address}:/root/backend/app/json"]
subprocess.run(command)

Expand Down
Binary file added app/quant-analysis/daily_return.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added app/quant-analysis/histogram.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
105 changes: 105 additions & 0 deletions app/quant-analysis/mc-simulation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from datetime import datetime
import yfinance as yf
from tqdm import tqdm

#correlated_stocks = ['AQN', 'PACB', 'ZI', 'IPG', 'EW']
ticker = 'GME'
start_date = datetime(2024,5,1)
end_date = datetime.today()
df = yf.download(ticker, start=start_date, end=end_date, interval="1d").reset_index()
#df = df.rename(columns={'Adj Close': 'close', 'Date': 'date'})
df['daily_return'] = df['Adj Close'].pct_change()
df = df.dropna()



fig, ax = plt.subplots(figsize=(14,5))

ax.plot(df['Date'], df['daily_return']*100, linestyle='--', marker='o',color='blue',label='Daily Returns')

legend = ax.legend(loc="best", shadow=True, fontsize=15)
plt.xlabel("Date",fontsize = 14)
plt.ylabel("Percentage %", fontsize=15)
plt.grid(True)
plt.savefig('daily_return.png')






fig, ax = plt.subplots(figsize=(14,5))

days = 365

#delta t
dt = 1/365

mu = df['daily_return'].mean()

sigma = df['daily_return'].std()

#Function takes in stock price, number of days to run, mean and standard deviation values
def stock_monte_carlo(start_price,days,mu,sigma):

price = np.zeros(days)
price[0] = start_price

shock = np.zeros(days)
drift = np.zeros(days)

for x in range(1,days):

#Shock and drift formulas taken from the Monte Carlo formula
shock[x] = np.random.normal(loc=mu*dt,scale=sigma*np.sqrt(dt))

drift[x] = mu * dt

#New price = Old price + Old price*(shock+drift)
price[x] = price[x-1] + (price[x-1] * (drift[x]+shock[x]))

return price

start_price = df['Adj Close'].iloc[-1] #Taken from above



for run in tqdm(range(200)):
ax.plot(stock_monte_carlo(start_price,days,mu,sigma))

plt.xlabel('Days')
plt.ylabel('Price')
plt.title('Monte Carlo Analysis for GME')
plt.savefig('simulation.png')




fig, ax = plt.subplots(figsize=(14,5))
runs = 10000

simulations = np.zeros(runs)
for run in tqdm(range(runs)):
simulations[run] = stock_monte_carlo(start_price,days,mu,sigma)[days-1]

q = np.percentile(simulations,1)

plt.hist(simulations,bins=200)

plt.figtext(0.6,0.8,s="Start price: $%.2f" %start_price)

plt.figtext(0.6,0.7,"Mean final price: $%.2f" % simulations.mean())

plt.figtext(0.6,0.6,"VaR(0.99): $%.2f" % (start_price -q,))

plt.figtext(0.15,0.6, "q(0.99): $%.2f" % q)

plt.axvline(x=q, linewidth=4, color='r')

plt.title(u"Final price distribution for Gamestop Stock after %s days" %days, weight='bold')
plt.savefig('histogram.png')

Binary file added app/quant-analysis/simulation.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit 0859e27

Please sign in to comment.