Skip to content

Commit

Permalink
feat!: remove out argument support and add C implementations
Browse files Browse the repository at this point in the history
This commit removes `out` argument support to `math/base/special/cceiln` and refactors the implementation to operate on `Complex128` instances.

Additionally, this commit adds C implementations for both `math/base/special/ceiln` and `math/base/special/cceiln`.

BREAKING CHANGE: remove `out` argument support

To migrate, users who previously provided an output array in which to write real and imaginary components should update to provide a complex number as input and to handle a complex number as output.

PR-URL: 	#988
Co-authored-by: Athan Reines <[email protected]>
Reviewed-by: Athan Reines <[email protected]> 
Private-ref: stdlib-js/todo#1454
  • Loading branch information
steff456 and kgryte authored Sep 23, 2023
1 parent 41f86d9 commit 141b0fd
Show file tree
Hide file tree
Showing 43 changed files with 3,693 additions and 470 deletions.
210 changes: 170 additions & 40 deletions lib/node_modules/@stdlib/math/base/special/cceiln/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,9 @@ limitations under the License.
-->

# ceiln
# cceiln

> Round a complex number to the nearest multiple of `10^n` toward positive infinity.
> Round each component of a double-precision complex floating-point number to the nearest multiple of `10^n` toward positive infinity.
<section class="usage">

Expand All @@ -30,39 +30,56 @@ limitations under the License.
var cceiln = require( '@stdlib/math/base/special/cceiln' );
```

#### cceiln( \[out,] re, im, n )
#### cceiln( z, n )

Rounds a `complex` number comprised of a **real** component `re` and an **imaginary** component `im` to the nearest multiple of `10^n` toward positive infinity.
Rounds each component of a double-precision complex floating-point number to the nearest multiple of `10^n` toward positive infinity.

```javascript
var Complex128 = require( '@stdlib/complex/float64' );
var real = require( '@stdlib/complex/real' );
var imag = require( '@stdlib/complex/imag' );

// Round components to 2 decimal places:
var v = cceiln( -3.141592653589793, 3.141592653589793, -2 );
// returns [ -3.14, 3.15 ]
var z = new Complex128( -3.141592653589793, 3.141592653589793 );
var v = cceiln( z, -2 );
// returns <Complex128>

var re = real( v );
// returns -3.14

var im = imag( v );
// returns 3.15

// If n = 0, `cceiln` behaves like `cceil`:
v = cceiln( -3.141592653589793, 3.141592653589793, 0 );
// returns [ -3.0, 4.0 ]
z = new Complex128( 9.99999, 0.1 );
v = cceiln( z, 0 );
// returns <Complex128>

// Round components to the nearest thousand:
v = cceiln( -12368.0, 12368.0, 3 );
// returns [ -12000.0, 13000.0 ]
re = real( v );
// returns 10.0

v = cceiln( NaN, NaN, 0 );
// returns [ NaN, NaN ]
```
im = imag( v );
// returns 1.0

// Round components to the nearest thousand:
z = new Complex128( 12368.0, -12368.0 );
v = cceiln( z, 3 );
// returns <Complex128>

By default, the function returns real and imaginary components as a two-element `array`. To avoid unnecessary memory allocation, the function supports providing an output (destination) object.
re = real( v );
// returns 13000.0

```javascript
var Float32Array = require( '@stdlib/array/float32' );
im = imag( v );
// returns -12000.0

var out = new Float32Array( 2 );
v = cceiln( new Complex128( NaN, NaN ), 2 );
// returns <Complex128>

var v = cceiln( out, -4.2, 5.5, 0 );
// returns <Float32Array>[ -4.0, 6.0 ]
re = real( v );
// returns NaN

var bool = ( v === out );
// returns true
im = imag( v );
// returns NaN
```

</section>
Expand All @@ -76,12 +93,22 @@ var bool = ( v === out );
- When operating on [floating-point numbers][ieee754] in bases other than `2`, rounding to specified digits can be **inexact**. For example,

```javascript
var Complex128 = require( '@stdlib/complex/float64' );
var real = require( '@stdlib/complex/real' );
var imag = require( '@stdlib/complex/imag' );

var x = 0.2 + 0.1;
// returns 0.30000000000000004

// Should round components to 0.3:
var v = cceiln( x, x, -16 );
// returns [ 0.3000000000000001, 0.3000000000000001 ]
var v = cceiln( new Complex128( x, x ), -16 );
// returns <Complex128>

var re = real( v );
// returns 0.3000000000000001

var im = imag( v );
// returns 0.3000000000000001
```

</section>
Expand All @@ -95,38 +122,141 @@ var bool = ( v === out );
<!-- eslint no-undef: "error" -->

```javascript
var uniform = require( '@stdlib/random/base/uniform' ).factory;
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' ).factory;
var Complex128 = require( '@stdlib/complex/float64' );
var randu = require( '@stdlib/random/base/randu' );
var ceil = require( '@stdlib/math/base/special/ceil' );
var real = require( '@stdlib/complex/real' );
var imag = require( '@stdlib/complex/imag' );
var cceiln = require( '@stdlib/math/base/special/cceiln' );
var re;
var im;
var rand1 = uniform( -50.0, 50.0 );
var rand2 = discreteUniform( -5.0, 0.0 );
var z;
var o;
var w;
var n;
var i;
var n;
for ( i = 0; i < 100; i++ ) {
re = ( randu()*100.0 ) - 50.0;
im = ( randu()*100.0 ) - 50.0;
z = new Complex128( re, im );
n = rand2();
z = new Complex128( rand1(), rand1() );
console.log( 'cceiln(%s, %s) = %s', z, n, cceiln( z, n ) );
}
```

</section>

<!-- /.examples -->

<!-- C interface documentation. -->

* * *

<section class="c">

## C APIs

<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->

<section class="intro">

</section>

n = ceil( randu()*5.0 );
o = cceiln( real(z), imag(z), -n );
w = new Complex128( o[ 0 ], o[ 1 ] );
<!-- /.intro -->

console.log( 'ceiln(%s,%s) = %s', z.toString(), n.toString(), w.toString() );
<!-- C usage documentation. -->

<section class="usage">

### Usage

```c
#include "stdlib/math/base/special/cceiln.h"
```

#### stdlib_base_cceiln( z, n )

Rounds each component of a double-precision complex floating-point number to the nearest multiple of `10^n` toward positive infinity.

```c
#include "stdlib/complex/float64.h"
#include "stdlib/complex/real.h"
#include "stdlib/complex/imag.h"
stdlib_complex128_t z = stdlib_complex128( -3.141592653589793, 3.141592653589793 );
stdlib_complex128_t out = stdlib_base_cceiln( z, -2 );
double re = stdlib_real( out );
// returns -3.14
double im = stdlib_imag( out );
// returns 3.15
```

The function accepts the following arguments:

- **z**: `[in] stdlib_complex128_t` input value.
- **n**: `[in] int32_t` integer power of 10.

```c
stdlib_complex128_t stdlib_base_cceiln( const stdlib_complex128_t z, int32_t n );
```
</section>
<!-- /.usage -->
<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->
<section class="notes">
</section>
<!-- /.notes -->
<!-- C API usage examples. -->
<section class="examples">
### Examples
```c
#include "stdlib/math/base/special/cceiln.h"
#include "stdlib/complex/float64.h"
#include "stdlib/complex/reim.h"
#include <stdio.h>

int main() {
const stdlib_complex128_t x[] = {
stdlib_complex128( 3.14, 1.5 ),
stdlib_complex128( -3.14, -1.5 ),
stdlib_complex128( 0.0, 0.0 ),
stdlib_complex128( 0.0/0.0, 0.0/0.0 )
};

stdlib_complex128_t v;
stdlib_complex128_t y;
double re1;
double im1;
double re2;
double im2;
int i;
for ( i = 0; i < 4; i++ ) {
v = x[ i ];
y = stdlib_base_cceiln( v, -2 );
stdlib_reim( v, &re1, &im1 );
stdlib_reim( y, &re2, &im2 );
printf( "cceiln(%lf + %lfi, -2) = %lf + %lfi\n", re1, im1, re2, im2 );
}
}
```
</section>
<!-- /.examples -->
</section>
<!-- /.c -->
<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->
<section class="related">
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,108 +21,37 @@
// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var isArray = require( '@stdlib/assert/is-array' );
var ceiln = require( '@stdlib/math/base/special/ceiln' );
var uniform = require( '@stdlib/random/base/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var Complex128 = require( '@stdlib/complex/float64' );
var real = require( '@stdlib/complex/real' );
var imag = require( '@stdlib/complex/imag' );
var pkg = require( './../package.json' ).name;
var cceiln = require( './../lib' );


// MAIN //

bench( pkg, function benchmark( b ) {
var re;
var im;
var values;
var y;
var i;

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
re = ( randu()*1000.0 ) - 500.0;
im = ( randu()*1000.0 ) - 500.0;
y = cceiln( re, im, -2 );
if ( y.length === 0 ) {
b.fail( 'should not be empty' );
}
}
b.toc();
if ( !isArray( y ) ) {
b.fail( 'should return an array' );
}
b.pass( 'benchmark finished' );
b.end();
});

bench( pkg+'::memory_reuse', function benchmark( b ) {
var out;
var re;
var im;
var y;
var i;

out = [ 0.0, 0.0 ];

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
re = ( randu()*1000.0 ) - 500.0;
im = ( randu()*1000.0 ) - 500.0;
y = cceiln( out, re, im, -2 );
if ( y.length === 0 ) {
b.fail( 'should not be empty' );
}
}
b.toc();
if ( !isArray( y ) ) {
b.fail( 'should return an array' );
}
b.pass( 'benchmark finished' );
b.end();
});

bench( pkg+'::manual', function benchmark( b ) {
var re;
var im;
var y;
var i;

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
re = ( randu()*1000.0 ) - 500.0;
im = ( randu()*1000.0 ) - 500.0;
y = [ ceiln( re, -2 ), ceiln( im, -2 ) ];
if ( y.length === 0 ) {
b.fail( 'should not be empty' );
}
}
b.toc();
if ( !isArray( y ) ) {
b.fail( 'should return an array' );
}
b.pass( 'benchmark finished' );
b.end();
});

bench( pkg+'::manual,memory_reuse', function benchmark( b ) {
var re;
var im;
var y;
var i;

y = [ 0.0, 0.0 ];
values = [
new Complex128( uniform( -500.0, 500.0 ), uniform( -500.0, 500.0 ) ),
new Complex128( uniform( -500.0, 500.0 ), uniform( -500.0, 500.0 ) )
];

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
re = ( randu()*1000.0 ) - 500.0;
im = ( randu()*1000.0 ) - 500.0;
y[ 0 ] = ceiln( re, -2 );
y[ 1 ] = ceiln( im, -2 );
if ( y.length === 0 ) {
b.fail( 'should not be empty' );
y = cceiln( values[ i%values.length ], -2 );
if ( isnan( real( y ) ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( !isArray( y ) ) {
b.fail( 'should return an array' );
if ( isnan( imag( y ) ) ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
Expand Down
Loading

1 comment on commit 141b0fd

@stdlib-bot
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Coverage Report

Package Statements Branches Functions Lines
math/base/special/cceiln $\color{green}266/266$
$\color{green}+100.00\%$
$\color{green}5/5$
$\color{green}+100.00\%$
$\color{green}2/2$
$\color{green}+100.00\%$
$\color{green}266/266$
$\color{green}+100.00\%$
math/base/special/ceiln $\color{green}272/272$
$\color{green}+100.00\%$
$\color{green}24/24$
$\color{green}+100.00\%$
$\color{green}2/2$
$\color{green}+100.00\%$
$\color{green}272/272$
$\color{green}+100.00\%$

The above coverage report was generated for the changes in this push.

Please sign in to comment.