-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmcmc_true_aff_hard.py
496 lines (443 loc) · 20.4 KB
/
mcmc_true_aff_hard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import argparse
import gzip
import pickle
import itertools
import time
import copy
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
from scipy.stats import spearmanr
from scipy.stats import pearsonr
from lib.oracle_wrapper import get_oracle
import matplotlib.pyplot as plt
from Levenshtein import distance
parser = argparse.ArgumentParser()
parser.add_argument("--saving", default = False, type = bool)
parser.add_argument("--loading", default = True, type = bool)
parser.add_argument("--saving_num", default = 102, type = int)
parser.add_argument("--loading_num", default = 102, type = int)
parser.add_argument("--gen_learning_rate", default=1e-3, type=float)
parser.add_argument("--gen_Z_learning_rate", default=5e-2, type=float)
parser.add_argument("--gen_num_iterations", default=6000, type=int) # Maybe this is too low?
parser.add_argument("--gen_episodes_per_step", default=16, type=int)
parser.add_argument("--gen_data_sample_per_step", default=64, type=int)
parser.add_argument("--gen_model_type", default="cnn")
parser.add_argument("--save_path", default='results/test_mlp.pkl.gz')
parser.add_argument("--tb_log_dir", default='results/test_mlp')
parser.add_argument("--name", default='test_mlp')
parser.add_argument("--load_scores_path", default='.')
# Multi-round
parser.add_argument("--num_rounds", default=1, type=int)
parser.add_argument("--task", default="random", type=str)
parser.add_argument("--num_sampled_per_round", default=10, type=int) # 10k
parser.add_argument("--num_folds", default=5)
parser.add_argument("--vocab_size", default=22)
parser.add_argument("--max_len", default=65)
parser.add_argument("--gen_max_len", default=27)
parser.add_argument("--proxy_uncertainty", default="dropout")
parser.add_argument("--save_scores_path", default=".")
parser.add_argument("--save_scores", action="store_true")
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--run", default=-1, type=int)
parser.add_argument("--noise_params", action="store_true")
parser.add_argument("--enable_tensorboard", action="store_true")
parser.add_argument("--save_proxy_weights", action="store_true")
parser.add_argument("--use_uncertainty", action="store_true")
parser.add_argument("--filter", action="store_true")
parser.add_argument("--kappa", default=0.1, type=float)
parser.add_argument("--acq_fn", default="none", type=str)
parser.add_argument("--load_proxy_weights", type=str)
parser.add_argument("--max_percentile", default=80, type=int)
parser.add_argument("--filter_threshold", default=0.1, type=float)
parser.add_argument("--filter_distance_type", default="edit", type=str)
parser.add_argument("--oracle_split", default="D2_target", type=str)
parser.add_argument("--proxy_data_split", default="D1", type=str)
parser.add_argument("--oracle_type", default="MLP", type=str)
parser.add_argument("--oracle_features", default="AlBert", type=str)
parser.add_argument("--medoid_oracle_dist", default="edit", type=str)
parser.add_argument("--medoid_oracle_norm", default=1, type=int)
parser.add_argument("--medoid_oracle_exp_constant", default=6, type=int)
# Generator
#parser.add_argument("--gen_learning_rate", default=1e-4, type=float)
#parser.add_argument("--gen_Z_learning_rate", default=5e-3, type=float)
parser.add_argument("--gen_clip", default=10, type=float)
#parser.add_argument("--gen_num_iterations", default=1, type=int) # Maybe this is too low?
#parser.add_argument("--gen_episodes_per_step", default=2, type=int)
parser.add_argument("--gen_num_hidden", default=16, type=int)
parser.add_argument("--hidden_size", default=64, type=int)
parser.add_argument("--layer_norm_eps", default=1e-12, type=float)
parser.add_argument("--num_attention_heads", default=4, type=int)
parser.add_argument("--hidden_act", default='relu', type=str)
parser.add_argument("--initializer_range", default=1.0, type=float)
parser.add_argument("--intermediate_size", default=128, type=int)
parser.add_argument("--gen_num_layers", default=2, type=int)
parser.add_argument("--gen_dropout", default=0.1, type=float)
parser.add_argument("--gen_reward_norm", default=1, type=float)
parser.add_argument("--gen_reward_exp", default=1, type=float)
parser.add_argument("--gen_reward_min", default=-8, type=float)
parser.add_argument("--gen_L2", default=0, type=float)
parser.add_argument("--gen_partition_init", default=100, type=float)
parser.add_argument("--pad_token_id", default=21, type=int)
#bytenet args
parser.add_argument("--gen_small_embedding", default=32, type=int)
parser.add_argument("--cnn_hidden_size", default=64, type=int)
parser.add_argument("--hidden_dropout_prob", default=0.1, type=float)
parser.add_argument("--cnn_max_r", default=4, type=int)
parser.add_argument("--cnn_n_layers", default=8, type=int)
# Soft-QLearning/GFlownet gen
parser.add_argument("--gen_reward_exp_ramping", default=1, type=float)
parser.add_argument("--gen_balanced_loss", default=1, type=float)
parser.add_argument("--gen_output_coef", default=1, type=float)
parser.add_argument("--gen_loss_eps", default=1e-5, type=float)
parser.add_argument("--gen_random_action_prob", default=0.05, type=float)
parser.add_argument("--gen_sampling_temperature", default=1., type=float)
parser.add_argument("--gen_leaf_coef", default=25, type=float)
#parser.add_argument("--gen_data_sample_per_step", default=0, type=int)
# PG gen
parser.add_argument("--gen_do_pg", default=0, type=int)
parser.add_argument("--gen_pg_entropy_coef", default=1e-2, type=float)
# learning partition Z explicitly
parser.add_argument("--gen_do_explicit_Z", default=1, type=int)
#parser.add_argument("--gen_model_type", default="cnn")
# Proxy
parser.add_argument("--proxy_learning_rate", default=1e-4)
parser.add_argument("--proxy_type", default="regression")
parser.add_argument("--proxy_arch", default="mlp")
parser.add_argument("--proxy_num_layers", default=4)
parser.add_argument("--proxy_dropout", default=0.1)
parser.add_argument("--proxy_num_hid", default=64, type=int)
parser.add_argument("--proxy_L2", default=1e-4, type=float)
parser.add_argument("--proxy_num_per_minibatch", default=256, type=int)
parser.add_argument("--proxy_early_stop_tol", default=5, type=int)
parser.add_argument("--proxy_early_stop_to_best_params", default=0, type=int)
parser.add_argument("--proxy_num_iterations", default=30000, type=int)
parser.add_argument("--proxy_num_dropout_samples", default=25, type=int)
# Oracle PGen
parser.add_argument("--small_embedding", default=16, type=int)
parser.add_argument("--pgen_hidden_size", default=64, type=int)
amino_acid = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y']
amino_acid_dic = {'A':0, 'C':1, 'D':2,'E':3, 'F':4, 'G':5, 'H':6, 'I':7, 'K':8, 'L':9, 'M':10, 'N':11, 'P':12, 'Q':13, 'R':14, 'S':15, 'T':16, 'V':17, 'W':18, 'Y':19}
def sample(seq):
pos = np.random.randint(0,high=33)
aa = amino_acid[np.random.randint(0,high = 20)]
if pos == 0:
new_seq = aa+seq[1:]
elif pos == 32:
new_seq = seq[0:32]+aa
else:
new_seq = seq[0:pos]+aa+seq[pos+1:]
return new_seq
def sample_para(seq):
new_seq = copy.deepcopy(seq)
for s in range(len(seq)):
if len(seq[s]) != 33:
print('error')
pos = np.random.randint(0,high=33)
aa = amino_acid[np.random.randint(0,high = 20)]
if pos == 0:
new_seq[s] = aa+seq[s][1:]
elif pos == 32:
new_seq[s] = seq[s][0:-1]+aa
else:
new_seq[s] = seq[s][0:pos]+aa+seq[s][pos+1:]
return new_seq
def sample_para_lim(seq,ori_seed):
new_seq = copy.deepcopy(seq)
for s in range(len(seq)):
if len(seq[s]) != 33:
print('error')
if distance(seq[s],ori_seed) < 6:
pos = np.random.randint(0,high=33)
else:
list_of_pos = [i for i in range(len(seq[s])) if seq[s][i] != ori_seed[i]]
pos = np.random.choice(list_of_pos)
aa = amino_acid[np.random.randint(0,high = 20)]
if pos == 0:
new_seq[s] = aa+seq[s][1:]
elif pos == 32:
new_seq[s] = seq[s][0:-1]+aa
else:
new_seq[s] = seq[s][0:pos]+aa+seq[s][pos+1:]
return new_seq
def one_hot_vec_para(seqs,n_chains):
one_hot_seqs = np.zeros([n_chains,len(seqs),33,20])
for s in range(len(seqs)):
for c in range(n_chains):
seq = seqs[s][c]
for pos in range(len(seq)):
one_hot_seqs[c,s,pos,amino_acid_dic[seq[pos]]] = 1
return one_hot_seqs
def mean_chain(seqs):
p = np.zeros([33,20])
for s in seqs:
for pos in range(len(s)):
p[pos,amino_acid.index(s[pos])] += 1
p = p/len(seqs)
print(p)
def var_chain(seqs,mean):
p = np.zeros([33,20])
for s in seqs:
for pos in range(len(s)):
p[pos,amino_acid.index(s[pos])] += 1
p = p/len(seqs)
print(p)
def get_seeds(n_chains):
seqs = []
with open('./lib/dataset/IGLM_seqs.txt','r') as f:
for i in range(n_chains):
seqs.append(next(f).split('\n')[0])
return seqs
def get_seeds_gp_2(n_chains):
seqs = ['GFTLNSYGISIYSDGRRTFYGDSVGRAAGTFDS']*n_chains
return seqs
def get_neighbours(seq):
neigh = []
for pos in range(len(seq)):
for aa in amino_acid:
if aa != seq[pos]:
if pos == 0:
new_seq = aa+seq[1:]
elif pos == 32:
new_seq = seq[0:32]+aa
else:
new_seq = seq[0:pos]+aa+seq[pos+1:]
neigh.append(new_seq)
return neigh
def check_seed(oracle):
seqs = get_seeds(8)
print(seqs[0])
neigh = get_neighbours(seqs[1])
print(neigh)
r = oracle.get_ppost_score([seqs[1]]).cpu().numpy()
r_neigh = oracle.get_ppost_score(neigh).cpu().numpy()
print(r)
print(np.max(r_neigh))
print(np.mean(r_neigh))
print(np.exp(np.max(r_neigh))/np.exp(r))
def autocorr(l_chain,chains):
res = []
for time in range(10,1000,5):
a = []
for j in range(1000,l_chain-time):
seqs_1 = chains[0,j]
seqs_2 = chains[0,j+time]
a.append(np.sum(np.logical_and(seqs_1,seqs_2)))
res.append(np.mean(a))
return res
def autocorr_2(chains,l_chains):
corr = []
chains = chains[0]
l_chains = chains.shape[0]
print(l_chains)
for step in range(10,300,5):
res = np.zeros([33,20])
for i in range(l_chains-step):
res += chains[i]*chains[i+step]
res = res / (l_chains-step)
corr.append(np.sum(res))
return corr
def gelman_rubin(chains,n_chains,l_chain):
chains_mean = np.mean(chains,axis = 1)
chains_var = np.var(chains,axis = 1)
total_mean = np.mean(chains_mean,axis = 0)
W = np.mean(chains_var,axis = 0)
B = np.copy(chains_mean)
for i in range(n_chains):
B[i] = (B[i]-total_mean)**2
B = np.sum(B,axis = 0)
B = B*l_chain/(n_chains-1)
V = (l_chain-1)/(l_chain) * W + ((n_chains+1)/(n_chains*l_chain)) * B
#print(np.sqrt((V+0.01)/(W+0.01)))
print(np.sqrt(np.max((V)/(W+0.01))))
return np.sqrt(np.max((V)/(W+0.01)))
from sklearn.linear_model import LinearRegression
from scipy.optimize import curve_fit
def fit_mcmc(chains,l_chain):
res = autocorr_2(chains,l_chain)
print(res)
fit_exp(res,np.min(res)-0.001)
def para_mcmc(oracle,seed,l_chain,n_chains,skip,dist_lim):
ori_seed = 'GFTLNSYGISIYSDGRRTFYGDSVGRAAGTFDS'
seq = copy.deepcopy(seed)
seqs = []
step = 1
log_probs = np.zeros((l_chain,n_chains))
logging = []
ppost_logging = []
sol_logging = []
curr_r = oracle.score_true_aff_seqs(seed)
for i in tqdm(range(l_chain)):
#new_seq = sample_para(seq)
new_seq = sample_para_lim(seq,ori_seed)
new_r = oracle.score_true_aff_seqs(new_seq)
alpha = np.exp((new_r-curr_r))
prob = np.random.rand(n_chains)
for j in range(n_chains):
if distance(new_seq[j],ori_seed) >= 7:
print('very bad!')
if prob[j] <= alpha[j] and (distance(new_seq[j],ori_seed) < 7 or not dist_lim):
seq[j] = new_seq[j]
curr_r[j] = new_r[j]
if (i % 50 == 0):
print(seq)
print(curr_r)
print([distance(i,ori_seed) for i in seq])
if (i % step == 0 and i >= skip):
seqs.append(copy.deepcopy(seq))
log_probs[i] = curr_r
bit_chains = one_hot_vec_para(seqs,n_chains)
return seqs,log_probs,bit_chains
def get_prev_seeds(n_chains,weights,dist_lim,replicate):
if not dist_lim:
seqs = []
with open('./lib/dataset/gen_seqs/mcmc/true_aff_hard/mcmc_true_aff_hard_exp_sol:{}_aff:{}_global:{}_beta:{}_immuno:{}_rep:{}.txt'.format(weights[1],weights[2],weights[3],weights[4],weights[5],replicate),'r') as f:
for line in f:
seqs.append(line.split('\n')[0])
return seqs[-n_chains:]
else:
seqs = []
with open('./lib/dataset/gen_seqs/mcmc/true_aff_hard/mcmc_true_aff_hard_exp_lim_sol:{}_aff:{}_global:{}_beta:{}_immuno:{}_rep:{}.txt'.format(weights[1],weights[2],weights[3],weights[4],weights[5],replicate),'r') as f:
for line in f:
seqs.append(line.split('\n')[0])
return seqs[-n_chains:]
def sample_chains_para(oracle,keep_going,wei,replicate):
n_chains = 8
l_chain = 20000
skip = 0
use_annealing = False
dist_lim = True
weights = np.array(wei)
if not keep_going and not use_annealing:
seed = get_seeds_gp_2(n_chains)
elif not keep_going and use_annealing:
print('using annealing')
annealing_gw = wei[3] - 5.0
annealing_w = np.array(wei)
annealing_w[3] = annealing_gw
seed = get_prev_seeds(n_chains,annealing_w,dist_lim,replicate)
else:
seed = get_prev_seeds(n_chains,weights,dist_lim,replicate)
#oracle = get_oracle(args)
oracle.set_weights(weights)
oracle.gen_all_cdr = True
oracle.enc_type = 'esm_t6'
oracle.use_hum = True
var = 1.0
perc = 0.8
method = 'hard'
oracle.update_true_aff_gp(var,perc,method)
print(oracle.true_aff_method)
seqs,r,bit_chains = para_mcmc(oracle,seed,l_chain,n_chains,skip,dist_lim)
#fit_mcmc(bit_chains,l_chain)
r = np.reshape(r, -1)
if not keep_going:
if not dist_lim:
with open('./lib/dataset/gen_seqs/mcmc/true_aff_hard/mcmc_true_aff_hard_exp_sol:{}_aff:{}_global:{}_beta:{}_immuno:{}_rep:{}.txt'.format(weights[1],weights[2],weights[3],weights[4],weights[5],replicate),'w') as f:
for seq in seqs:
for a in seq:
f.write('{}\n'.format(a))
np.save('./lib/dataset/gen_seqs/mcmc/true_aff_hard/mcmc_true_aff_hard_exp_prob_sol:{}_aff:{}_global:{}_beta:{}_immuno:{}_rep:{}.txt'.format(weights[1],weights[2],weights[3],weights[4],weights[5],replicate),r)
else:
with open('./lib/dataset/gen_seqs/mcmc/true_aff_hard/mcmc_true_aff_hard_exp_lim_sol:{}_aff:{}_global:{}_beta:{}_immuno:{}_rep:{}.txt'.format(weights[1],weights[2],weights[3],weights[4],weights[5],replicate),'w') as f:
for seq in seqs:
for a in seq:
f.write('{}\n'.format(a))
np.save('./lib/dataset/gen_seqs/mcmc/true_aff_hard/mcmc_true_aff_hard_exp_lim_prob_sol:{}_aff:{}_global:{}_beta:{}_immuno:{}_rep:{}.txt'.format(weights[1],weights[2],weights[3],weights[4],weights[5],replicate),r)
else:
if not dist_lim:
with open('./lib/dataset/gen_seqs/mcmc/true_aff_hard/mcmc_true_aff_hard_exp_sol:{}_aff:{}_global:{}_beta:{}_immuno:{}_rep:{}.txt'.format(weights[1],weights[2],weights[3],weights[4],weights[5],replicate),'a') as f:
for seq in seqs:
for a in seq:
f.write('{}\n'.format(a))
r_prev = np.load('./lib/dataset/gen_seqs/mcmc/true_aff_hard/mcmc_true_aff_hard_exp_prob_sol:{}_aff:{}_global:{}_beta:{}_immuno_rep:{}:{}.txt.npy'.format(weights[1],weights[2],weights[3],weights[4],weights[5],replicate))
r = np.concatenate((r_prev,r))
np.save('./lib/dataset/gen_seqs/mcmc/true_aff_hard/mcmc_true_aff_hard_exp_prob_sol:{}_aff:{}_global:{}_beta:{}_immuno:{}_rep:{}.txt'.format(weights[1],weights[2],weights[3],weights[4],weights[5],replicate),r)
else:
with open('./lib/dataset/gen_seqs/mcmc/true_aff_hard/mcmc_true_aff_hard_exp_lim_sol:{}_aff:{}_global:{}_beta:{}_immuno:{}_rep:{}.txt'.format(weights[1],weights[2],weights[3],weights[4],weights[5],replicate),'a') as f:
for seq in seqs:
for a in seq:
f.write('{}\n'.format(a))
r_prev = np.load('./lib/dataset/gen_seqs/mcmc/true_aff_hard/mcmc_true_aff_hard_exp_lim_prob_sol:{}_aff:{}_global:{}_beta:{}_immuno:{}_rep:{}.txt.npy'.format(weights[1],weights[2],weights[3],weights[4],weights[5],replicate))
r = np.concatenate((r_prev,r))
np.save('./lib/dataset/gen_seqs/mcmc/true_aff_hard/mcmc_true_aff_hard_exp_lim_prob_sol:{}_aff:{}_global:{}_beta:{}_immuno:{}_rep:{}.txt'.format(weights[1],weights[2],weights[3],weights[4],weights[5],replicate),r)
def burn_in(wei,replicate):
print(wei)
n_chains = 8
skip = 0
weights = np.array(wei)
seqs = []
seqs_filename = './lib/dataset/gen_seqs/mcmc/true_aff_hard/mcmc_true_aff_hard_exp_lim_sol:{}_aff:{}_global:{}_beta:{}_immuno:{}_rep:{}.txt'.format(weights[1],weights[2],weights[3],weights[4],weights[5],replicate)
with open(seqs_filename,'r') as f:
for line in f:
seqs.append(line.split('\n')[0])
l_chain = int(len(seqs)/n_chains)
seqs_2 = [[] for i in range(l_chain)]
idx = 0
for i in range(l_chain):
for j in range(n_chains):
seqs_2[i].append(seqs[idx])
idx += 1
seqs = seqs_2
score_filename = './lib/dataset/gen_seqs/mcmc/true_aff_hard/mcmc_true_aff_hard_exp_lim_prob_sol:{}_aff:{}_global:{}_beta:{}_immuno:{}_rep:{}.txt.npy'.format(weights[1],weights[2],weights[3],weights[4],weights[5],replicate)
scores = np.load(score_filename)
scores = scores.reshape((l_chain,n_chains))
min_gr = 5.0
min_skip = 0
bit_chains = one_hot_vec_para(seqs,n_chains)
print(bit_chains.shape)
if bit_chains.shape[1] >= 300000:
bit_chains = bit_chains[:,-80000:,:,:]
l_chain = 80000
seqs = seqs[-80000:]
scores = scores[-80000:]
print(bit_chains.shape)
print(scores.shape)
for k in tqdm(range(int(l_chain/500))):
skip = k * 500
gr = gelman_rubin(bit_chains[:,skip:,:,:],n_chains ,l_chain - skip)
if gr < min_gr:
min_skip = skip
min_gr = gr
seqs_filename = './lib/dataset/gen_seqs/mcmc/true_aff_hard/mcmc_true_aff_hard_exp_lim_burn_sol:{}_aff:{}_global:{}_beta:{}_immuno:{}_rep:{}.txt'.format(weights[1],weights[2],weights[3],weights[4],weights[5],replicate)
with open(seqs_filename,'w') as f:
for seq in seqs[min_skip:]:
for a in seq:
f.write('{}\n'.format(a))
scores = scores[min_skip:].reshape(-1)
print(scores.shape)
score_filename = './lib/dataset/gen_seqs/mcmc/true_aff_hard/mcmc_true_aff_hard_exp_lim_burn_prob_sol:{}_aff:{}_global:{}_beta:{}_immuno:{}_rep:{}.txt.npy'.format(weights[1],weights[2],weights[3],weights[4],weights[5],replicate)
np.save(score_filename,scores)
return (min_skip,min_gr)
def main(args):
oracle = get_oracle(args)
replicate = 1
print('using replicate:{}'.format(replicate))
torch.manual_seed(replicate - 1)
np.random.seed(replicate - 1)
args.device = torch.device('cuda')
global_weights = [10.0]
beta = [-1.0,0.0,1.0,2.0]
keep_going = False
gelman_rubin = {}
for j in global_weights:
for b in beta:
weights = [[1.0,0.15,0.85,j,b,1.0],[1.0,0.0,1.0,j,b,1.0]]
for w in weights:
if keep_going:
gr = burn_in(w,replicate)
if gr[1] > 1.1:
sample_chains_para(oracle,keep_going,w,replicate)
gr = burn_in(w,replicate)
gelman_rubin['sol_wei:{}_gw:{}_beta:{}'.format(w[1],w[3],w[4])] = gr
else:
sample_chains_para(oracle,keep_going,w,replicate)
gr = burn_in(w,replicate)
gelman_rubin['sol_wei:{}_gw:{}_beta:{}'.format(w[1],w[3],w[4])] = gr
for key in gelman_rubin:
print(key)
print(gelman_rubin[key])
if __name__ == "__main__":
args = parser.parse_args()
main(args)