Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve numerical stability of binomial_logit_lpmf #2945

Merged
merged 2 commits into from
Sep 26, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 9 additions & 23 deletions stan/math/prim/prob/binomial_logit_lpmf.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -3,14 +3,11 @@

#include <stan/math/prim/meta.hpp>
#include <stan/math/prim/err.hpp>
#include <stan/math/prim/fun/as_column_vector_or_scalar.hpp>
#include <stan/math/prim/fun/as_array_or_scalar.hpp>
#include <stan/math/prim/fun/as_value_column_array_or_scalar.hpp>
#include <stan/math/prim/fun/binomial_coefficient_log.hpp>
#include <stan/math/prim/fun/inc_beta.hpp>
#include <stan/math/prim/fun/inv_logit.hpp>
#include <stan/math/prim/fun/lbeta.hpp>
#include <stan/math/prim/fun/log.hpp>
#include <stan/math/prim/fun/log_inv_logit.hpp>
#include <stan/math/prim/fun/log1m_inv_logit.hpp>
#include <stan/math/prim/fun/exp.hpp>
#include <stan/math/prim/fun/max_size.hpp>
#include <stan/math/prim/fun/size.hpp>
#include <stan/math/prim/fun/size_zero.hpp>
Expand Down Expand Up @@ -66,33 +63,22 @@ return_type_t<T_prob> binomial_logit_lpmf(const T_n& n, const T_N& N,
if (!include_summand<propto, T_prob>::value) {
return 0.0;
}
const auto& inv_logit_alpha
= to_ref_if<!is_constant_all<T_prob>::value>(inv_logit(alpha_val));
const auto& inv_logit_neg_alpha
= to_ref_if<!is_constant_all<T_prob>::value>(inv_logit(-alpha_val));
const auto& log_inv_logit_alpha
= to_ref_if<!is_constant_all<T_prob>::value>(log_inv_logit(alpha_val));
const auto& log1m_inv_logit_alpha
= to_ref_if<!is_constant_all<T_prob>::value>(log1m_inv_logit(alpha_val));

size_t maximum_size = max_size(n, N, alpha);
const auto& log_inv_logit_alpha = log(inv_logit_alpha);
const auto& log_inv_logit_neg_alpha = log(inv_logit_neg_alpha);
T_partials_return logp = sum(n_val * log_inv_logit_alpha
+ (N_val - n_val) * log_inv_logit_neg_alpha);
+ (N_val - n_val) * log1m_inv_logit_alpha);
if (include_summand<propto, T_n, T_N>::value) {
logp += sum(binomial_coefficient_log(N_val, n_val)) * maximum_size
/ max_size(n, N);
}

auto ops_partials = make_partials_propagator(alpha_ref);
if (!is_constant_all<T_prob>::value) {
if (is_vector<T_prob>::value) {
edge<0>(ops_partials).partials_
= n_val * inv_logit_neg_alpha - (N_val - n_val) * inv_logit_alpha;
} else {
T_partials_return sum_n = sum(n_val) * maximum_size / math::size(n);
partials<0>(ops_partials)[0] = forward_as<T_partials_return>(
sum_n * inv_logit_neg_alpha
- (sum(N_val) * maximum_size / math::size(N) - sum_n)
* inv_logit_alpha);
}
edge<0>(ops_partials).partials_ = n_val - N_val * exp(log_inv_logit_alpha);
}

return ops_partials.build(logp);
Expand Down
23 changes: 23 additions & 0 deletions test/unit/math/mix/prob/binomial_logit_lpmf_test.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
#include <stan/math/mix.hpp>
#include <test/unit/math/test_ad.hpp>

TEST(mathMixScalFun, binomial_logit_lpmf) {
auto f = [](const auto n, const auto N) {
return [=](const auto& alpha) {
return stan::math::binomial_logit_lpmf(n, N, alpha);
};
};

Eigen::VectorXd alpha = Eigen::VectorXd::Random(3);
std::vector<int> n_arr{1, 4, 5};
std::vector<int> N_arr{10, 45, 25};

stan::test::expect_ad(f(5, 25), 2.11);
stan::test::expect_ad(f(5, 25), alpha);
stan::test::expect_ad(f(n_arr, 25), alpha);
stan::test::expect_ad(f(n_arr, N_arr), alpha);
stan::test::expect_ad(f(n_arr, 10), 2.11);
stan::test::expect_ad(f(n_arr, N_arr), 2.11);
stan::test::expect_ad(f(5, N_arr), 2.11);
stan::test::expect_ad(f(5, N_arr), alpha);
}