Skip to content

Commit

Permalink
add beta_neg_binomial_lcdf with test
Browse files Browse the repository at this point in the history
  • Loading branch information
lingium committed Oct 27, 2024
1 parent 877df10 commit 7a40206
Show file tree
Hide file tree
Showing 2 changed files with 244 additions and 0 deletions.
152 changes: 152 additions & 0 deletions stan/math/prim/prob/beta_neg_binomial_lcdf.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
#ifndef STAN_MATH_PRIM_PROB_BETA_NEG_BINOMIAL_LCDF_HPP
#define STAN_MATH_PRIM_PROB_BETA_NEG_BINOMIAL_LCDF_HPP

#include <stan/math/prim/meta.hpp>
#include <stan/math/prim/err.hpp>
#include <stan/math/prim/fun/constants.hpp>
#include <stan/math/prim/fun/digamma.hpp>
#include <stan/math/prim/fun/hypergeometric_3F2.hpp>
#include <stan/math/prim/fun/grad_F32.hpp>
#include <stan/math/prim/fun/lbeta.hpp>
#include <stan/math/prim/fun/lgamma.hpp>
#include <stan/math/prim/fun/max_size.hpp>
#include <stan/math/prim/fun/scalar_seq_view.hpp>
#include <stan/math/prim/fun/size.hpp>
#include <stan/math/prim/fun/size_zero.hpp>
#include <stan/math/prim/functor/partials_propagator.hpp>
#include <cmath>

namespace stan {
namespace math {

/** \ingroup prob_dists
* Returns the log CDF of the Beta-Negative Binomial distribution with given
* number of successes, prior success, and prior failure parameters.
* Given containers of matching sizes, returns the log sum of probabilities.
*
* @tparam T_n type of failure parameter
* @tparam T_r type of number of successes parameter
* @tparam T_alpha type of prior success parameter
* @tparam T_beta type of prior failure parameter
*
* @param n failure parameter
* @param r Number of successes parameter
* @param alpha prior success parameter
* @param beta prior failure parameter
* @param precision precision for `grad_F32`, default \f$10^{-8}\f$
* @param max_steps max iteration allowed for `grad_F32`, default \f$10^{8}\f$
* @return log probability or log sum of probabilities
* @throw std::domain_error if r, alpha, or beta fails to be positive
* @throw std::invalid_argument if container sizes mismatch
*/
template <typename T_n, typename T_r, typename T_alpha, typename T_beta>
inline return_type_t<T_r, T_alpha, T_beta> beta_neg_binomial_lcdf(
const T_n& n, const T_r& r, const T_alpha& alpha, const T_beta& beta,
const double precision = 1e-8, const int max_steps = 1e8) {
static constexpr const char* function = "beta_neg_binomial_lcdf";
check_consistent_sizes(
function, "Failures variable", n, "Number of successes parameter", r,
"Prior success parameter", alpha, "Prior failure parameter", beta);
if (size_zero(n, r, alpha, beta)) {
return 0;
}

using T_r_ref = ref_type_t<T_r>;
T_r_ref r_ref = r;
using T_alpha_ref = ref_type_t<T_alpha>;
T_alpha_ref alpha_ref = alpha;
using T_beta_ref = ref_type_t<T_beta>;
T_beta_ref beta_ref = beta;
check_positive_finite(function, "Number of successes parameter", r_ref);
check_positive_finite(function, "Prior success parameter", alpha_ref);
check_positive_finite(function, "Prior failure parameter", beta_ref);

scalar_seq_view<T_n> n_vec(n);
scalar_seq_view<T_r_ref> r_vec(r_ref);
scalar_seq_view<T_alpha_ref> alpha_vec(alpha_ref);
scalar_seq_view<T_beta_ref> beta_vec(beta_ref);
int size_n = stan::math::size(n);
size_t max_size_seq_view = max_size(n, r, alpha, beta);

// Explicit return for extreme values
// The gradients are technically ill-defined, but treated as zero
for (int i = 0; i < size_n; i++) {
if (n_vec.val(i) < 0) {
return negative_infinity();
}
}

using T_partials_return = partials_return_t<T_n, T_r, T_alpha, T_beta>;
T_partials_return log_cdf(0.0);
auto ops_partials = make_partials_propagator(r_ref, alpha_ref, beta_ref);
for (size_t i = 0; i < max_size_seq_view; i++) {
// Explicit return for extreme values
// The gradients are technically ill-defined, but treated as zero
if (n_vec.val(i) == std::numeric_limits<int>::max()) {
return 0.0;
}
auto n_dbl = n_vec.val(i);
auto r_dbl = r_vec.val(i);
auto alpha_dbl = alpha_vec.val(i);
auto beta_dbl = beta_vec.val(i);
auto b_plus_n = beta_dbl + n_dbl;
auto r_plus_n = r_dbl + n_dbl;
auto a_plus_r = alpha_dbl + r_dbl;
using a_t = return_type_t<decltype(b_plus_n), decltype(r_plus_n)>;
using b_t = return_type_t<decltype(n_dbl), decltype(a_plus_r),
decltype(b_plus_n)>;
auto F = hypergeometric_3F2(
std::initializer_list<a_t>{1.0, b_plus_n + 1.0, r_plus_n + 1.0},
std::initializer_list<b_t>{n_dbl + 2.0, a_plus_r + b_plus_n + 1.0},
1.0);
auto C = lgamma(r_plus_n + 1.0) + lbeta(a_plus_r, b_plus_n + 1.0)
- lgamma(r_dbl) - lbeta(alpha_dbl, beta_dbl) - lgamma(n_dbl + 2.0);
auto ccdf = stan::math::exp(C) * F;
log_cdf += log1m(ccdf);

if constexpr (!is_constant_all<T_r, T_alpha, T_beta>::value) {
auto chain_rule_term = -ccdf / (1.0 - ccdf);
auto digamma_n_r_alpha_beta = digamma(a_plus_r + b_plus_n + 1.0);
T_partials_return dF[6];
grad_F32<false, !is_constant<T_beta>::value, !is_constant_all<T_r>::value,
false, true, false>(dF, 1.0, b_plus_n + 1.0, r_plus_n + 1.0,
n_dbl + 2.0, a_plus_r + b_plus_n + 1.0, 1.0,
precision, max_steps);

if constexpr (!is_constant<T_r>::value || !is_constant<T_alpha>::value) {
auto digamma_r_alpha = digamma(a_plus_r);
if constexpr (!is_constant<T_r>::value) {
auto partial_lccdf = digamma(r_plus_n + 1.0)
+ (digamma_r_alpha - digamma_n_r_alpha_beta)
+ (dF[2] + dF[4]) / F - digamma(r_dbl);
partials<0>(ops_partials)[i] += partial_lccdf * chain_rule_term;
}
if constexpr (!is_constant<T_alpha>::value) {
auto partial_lccdf = digamma_r_alpha - digamma_n_r_alpha_beta
+ dF[4] / F - digamma(alpha_dbl);
partials<1>(ops_partials)[i] += partial_lccdf * chain_rule_term;
}
}

if constexpr (!is_constant<T_alpha>::value
|| !is_constant<T_beta>::value) {
auto digamma_alpha_beta = digamma(alpha_dbl + beta_dbl);
if constexpr (!is_constant<T_alpha>::value) {
partials<1>(ops_partials)[i] += digamma_alpha_beta * chain_rule_term;
}
if constexpr (!is_constant<T_beta>::value) {
auto partial_lccdf = digamma(b_plus_n + 1.0) - digamma_n_r_alpha_beta
+ (dF[1] + dF[4]) / F
- (digamma(beta_dbl) - digamma_alpha_beta);
partials<2>(ops_partials)[i] += partial_lccdf * chain_rule_term;
}
}
}
}

return ops_partials.build(log_cdf);
}

} // namespace math
} // namespace stan
#endif
92 changes: 92 additions & 0 deletions test/prob/beta_neg_binomial/beta_neg_binomial_cdf_log_test.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
// Arguments: Ints, Doubles, Doubles, Doubles
#include <stan/math/prim/prob/beta_neg_binomial_lcdf.hpp>
#include <stan/math/prim/fun/lbeta.hpp>
#include <stan/math/prim/fun/lgamma.hpp>

using stan::math::var;
using std::numeric_limits;
using std::vector;

class AgradCdfLogBetaNegBinomial : public AgradCdfLogTest {
public:
void valid_values(vector<vector<double>>& parameters,
vector<double>& ccdf_log) {
vector<double> param(4);

param[0] = 10; // n
param[1] = 5.5; // r
param[2] = 2.5; // alpha
param[3] = 0.5; // beta
parameters.push_back(param);
ccdf_log.push_back(std::log(0.967906252841089)); // expected cdf_log
}

void invalid_values(vector<size_t>& index, vector<double>& value) {
// n

// r
index.push_back(1U);
value.push_back(0.0);

index.push_back(1U);
value.push_back(-1.0);

index.push_back(1U);
value.push_back(std::numeric_limits<double>::infinity());

// alpha
index.push_back(2U);
value.push_back(0.0);

index.push_back(2U);
value.push_back(-1.0);

index.push_back(2U);
value.push_back(std::numeric_limits<double>::infinity());

// beta
index.push_back(3U);
value.push_back(0.0);

index.push_back(3U);
value.push_back(-1.0);

index.push_back(3U);
value.push_back(std::numeric_limits<double>::infinity());
}

// BOUND INCLUDED IN ORDER FOR TEST TO PASS WITH CURRENT FRAMEWORK
bool has_lower_bound() { return false; }

bool has_upper_bound() { return false; }

template <typename T_n, typename T_r, typename T_size1, typename T_size2,
typename T4, typename T5>
stan::return_type_t<T_r, T_size1, T_size2> cdf_log(const T_n& n, const T_r& r,
const T_size1& alpha,
const T_size2& beta,
const T4&, const T5&) {
return stan::math::beta_neg_binomial_lcdf(n, r, alpha, beta);
}

template <typename T_n, typename T_r, typename T_size1, typename T_size2,
typename T4, typename T5>
stan::return_type_t<T_r, T_size1, T_size2> cdf_log_function(
const T_n& n, const T_r& r, const T_size1& alpha, const T_size2& beta,
const T4&, const T5&) {
using stan::math::lbeta;
using stan::math::lgamma;
using stan::math::log_sum_exp;
using std::vector;

vector<stan::return_type_t<T_r, T_size1, T_size2>> lpmf_values;

for (int i = 0; i <= n; i++) {
auto lpmf = lbeta(i + r, alpha + beta) - lbeta(r, alpha)
+ lgamma(i + beta) - lgamma(i + 1) - lgamma(beta);
lpmf_values.push_back(lpmf);
}

return log_sum_exp(lpmf_values);
}
};

0 comments on commit 7a40206

Please sign in to comment.