This repository has been archived by the owner on Jun 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstreamer_sender.py
89 lines (73 loc) · 3.1 KB
/
streamer_sender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import socket
import time
import cv2
import numpy as np
from realsense import RSCamera
import imagezmq
from utils import truncate
from threading import Thread
import multiprocessing
class VideoSender:
'''
This class serves to send a pair of image frames from an Intel RealSense series camera
over the local network using imagezmq. We are compressing the frames before sending them.
'''
def __init__(self, addr) -> None:
# One sender for color images, one for depth images
self.sender_color = imagezmq.ImageSender(
connect_to=addr)
self.sender_depth = imagezmq.ImageSender(
connect_to=addr)
self.hostname = socket.gethostname()
# Quality of JPEG and PNG compression
self.jpeg_quality = 95
self.png_quality = 2
# Handle thread-safe access of compression results
manager = multiprocessing.Manager()
self.ret_dict = manager.dict()
def encode_color(self, color, ret_dict):
'''
Compress an OpenCV image frame with JPEG compression. Returns a bytestring in the given
return dictionary.
'''
ret, jpg_frame = cv2.imencode(
'.jpg', color, [int(cv2.IMWRITE_JPEG_QUALITY), self.jpeg_quality])
ret_dict['color'] = jpg_frame
def encode_depth(self, depth, ret_dict):
'''
Compress an OpenCV image frame with PNG compression. Returns a bytestring in the given
return dictionary.
'''
ret, frame_depth = cv2.imencode(
'.png', depth, [int(cv2.IMWRITE_PNG_COMPRESSION), self.png_quality])
ret_dict['depth'] = frame_depth
def send_frames(self, color, depth):
'''
Send the compressed frames using imagezmg and Python threads.
'''
# Threads are used here instead of multiprocessing since they provide quick setup and teardown
# While there is still the global interpreter lock at play and we do not have multiple processes
# we are creating and destroying a lot of threads, so the increased overhead of multiprocesssing
# is likely to slow things down instead of accelerate them compared to normal threads
t1 = Thread(target=self.encode_color, args=(color, self.ret_dict))
t2 = Thread(target=self.encode_depth, args=(depth, self.ret_dict))
t1.start()
t2.start()
t1.join()
t2.join()
# Get results from threads
jpg_color = self.ret_dict['color']
png_depth = self.ret_dict['depth']
self.sender_color.send_jpg(self.hostname, jpg_color)
self.sender_depth.send_jpg(self.hostname + '_depth', png_depth)
# This loop will run if this file is invoked directly, which should be the normal use case
if __name__=='__main__':
sender = VideoSender('tcp://10.31.62.7:5555')
cam = RSCamera()
while True:
start = time.time()
color, depth = cam.get_raw_color_aligned_frames()
sender.send_frames(color, depth)
end = time.time() - start
print(f'total loop took: (ms) {end}')
# print('sent frames')