This repository has been archived by the owner on Jun 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpointcloud.py
355 lines (267 loc) · 13.4 KB
/
pointcloud.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import open3d as o3d
import numpy as np
import cv2
import time
import math
from frame_transformations import get_transformation_matrix_about_arb_axis
class GraspCandidate:
def __init__(self, file=None):
self.pointcloud = o3d.geometry.PointCloud()
if file is not None:
self.pointcloud = o3d.io.read_point_cloud(file)
self.pointcloud, idxs = self.pointcloud.remove_radius_outlier(nb_points=16, radius=0.05)
self.bbox = None
self.main_axis = None
self.grasp_pcd = None
def set_point_cloud_from_aligned_frames(self, frame, depth_frame, cam_intrinsics):
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img_depth = o3d.geometry.Image(depth_frame)
img_color = o3d.geometry.Image(frame)
rgbd = o3d.geometry.RGBDImage.create_from_color_and_depth(img_color, img_depth, convert_rgb_to_intensity=False)
intrinsics = o3d.camera.PinholeCameraIntrinsic(cam_intrinsics.width, cam_intrinsics.height, cam_intrinsics.fx, cam_intrinsics.fy, cam_intrinsics.ppx, cam_intrinsics.ppy)
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd, intrinsics)
pcd.transform([[-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
# Save full PCD for illustration purposes
pcd = pcd.voxel_down_sample(0.03)
self.pointcloud.points = pcd.points
self.pointcloud.colors = pcd.colors
self.save_pcd('pcd/graphics/color_full_pcd.pcd')
def set_point_cloud_from_aligned_masked_frames(self, frame, depth_frame, cam_intrinsics):
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img_depth = o3d.geometry.Image(depth_frame)
img_color = o3d.geometry.Image(frame)
rgbd = o3d.geometry.RGBDImage.create_from_color_and_depth(img_color, img_depth, convert_rgb_to_intensity=False)
intrinsics = o3d.camera.PinholeCameraIntrinsic(cam_intrinsics.width, cam_intrinsics.height, cam_intrinsics.fx, cam_intrinsics.fy, cam_intrinsics.ppx, cam_intrinsics.ppy)
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd, intrinsics)
pcd.transform([[-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
# Save full PCD for illustration purposes
# self.save_pcd('pcd/graphics/color_full_pcd.pcd')
print('saving pcd at creation')
o3d.io.write_point_cloud('pcd/graphics/color_masked_full_pcd.pcd', pcd)
# ROI selection
# Get points and colors
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors)
# Filter out points where the color is exactly black - this will filter out all points that were masked before
rows, _ = np.where(colors != [0,0,0])
res_points = points[rows]
res_colors = colors[rows]
# Set the points and color of the point cloud to the masked point
pcd.points = o3d.utility.Vector3dVector(res_points)
pcd.colors = o3d.utility.Vector3dVector(res_colors)
# Save masked PCD for illustration purposes
self.save_pcd('pcd/graphics/color_masked_pcd.pcd')
o3d.io.write_point_cloud('pcd/graphics/color_masked_pcd.pcd', pcd)
# Downsampling to reduce computation time later on
pcd = pcd.voxel_down_sample(0.01)
# Update point cloud with calculated points
self.pointcloud.points = pcd.points
self.pointcloud.colors = pcd.colors
# Remove radius outliers
self.pointcloud, idxs = self.pointcloud.remove_radius_outlier(nb_points=16, radius=0.05)
# self.display_inlier_outlier(self.pointcloud, idxs)
def display_inlier_outlier(cloud, ind):
inlier_cloud = cloud.select_by_index(ind)
outlier_cloud = cloud.select_by_index(ind, invert=True)
print("Showing outliers (red) and inliers (gray): ")
outlier_cloud.paint_uniform_color([1, 0, 0])
inlier_cloud.paint_uniform_color([0.8, 0.8, 0.8])
o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud])
def save_pcd(self, file):
o3d.io.write_point_cloud(file, self.pointcloud)
def add_points_and_color_to_pcd(self, points, color):
curr_points = np.asarray(self.pointcloud.points)
curr_colors = np.asarray(self.pointcloud.colors)
new_points = np.concatenate((curr_points, points), axis=0)
new_colors = np.concatenate((curr_colors, [color for _ in range(len(points))]), axis=0)
self.pointcloud.points = o3d.utility.Vector3dVector(new_points)
self.pointcloud.colors = o3d.utility.Vector3dVector(new_colors)
def visualise_pcd(self, file=None):
if file is None:
pcd = self.pointcloud
else:
pcd = o3d.io.read_point_cloud(file)
vis = o3d.visualization.Visualizer()
vis.create_window('PCD', width=1280, height=720)
# Add default coordinate frame
# mesh = o3d.geometry.TriangleMesh.create_coordinate_frame()
# vis.add_geometry(mesh)
vis.add_geometry(pcd)
while True:
try:
vis.poll_events()
vis.update_renderer()
except KeyboardInterrupt:
vis.destroy_window()
del vis
def visualize_geometries(self, geometries):
vis = o3d.visualization.Visualizer()
vis.create_window('PCD', width=1280, height=720)
# Add default coordinate frame
# mesh = o3d.geometry.TriangleMesh.create_coordinate_frame()
# vis.add_geometry(mesh)
for g in geometries:
vis.add_geometry(g)
while True:
try:
vis.poll_events()
vis.update_renderer()
except KeyboardInterrupt:
vis.destroy_window()
del vis
pass
def find_centroid(self, add_to_pcd=False):
mean, _ = self.pointcloud.compute_mean_and_covariance()
return mean
def find_largest_axis(self):
try:
bbox = o3d.geometry.OrientedBoundingBox.create_from_points(self.pointcloud.points, robust=True)
except Exception:
print('Something went wrong trying to find the bounding box')
return None
self.bbox = bbox
box_points = np.asarray(bbox.get_box_points())
center = bbox.center
extents = bbox.extent
# Get index of maximum in array to determine longest axis and create a unit vector in the direction of the longest axis
max_idx = np.argmax(extents)
main_unit_vec = np.zeros(3)
main_unit_vec[max_idx] = 1
# These are the indices for the other unit vectors perpendicular to the one above
idx_1 = (max_idx + 1) % 3
idx_2 = (max_idx + 2) % 3
unit_vec_plane_1 = np.zeros(3)
unit_vec_plane_2 = np.zeros(3)
unit_vec_plane_1[idx_1] = 1
unit_vec_plane_2[idx_2] = 1
# Now, apply the transformation to rotate the base frame vectors to the bounding box frame
main_axis = np.dot(bbox.R, main_unit_vec)
axis_plane_1 = np.dot(bbox.R, unit_vec_plane_1)
axis_plane_2 = np.dot(bbox.R, unit_vec_plane_2)
# Use for visualisation
axis_points = [np.add(center, np.dot(main_axis, 0.1*k)) for k in range(8)]
# axis_points_1 = [np.add(center, np.dot(axis_plane_1, 0.1*k)) for k in range(8)]
# axis_points_2 = [np.add(center, np.dot(axis_plane_2, 0.1*k)) for k in range(8)]
self.add_points_and_color_to_pcd(axis_points, (0,255,0))
# self.add_points_and_color_to_pcd(axis_points_1, (0,255,0))
# self.add_points_and_color_to_pcd(axis_points_2, (0,255,0))
self.main_axis = main_axis
return [[main_axis, extents[max_idx]], [axis_plane_1, extents[idx_1]], [axis_plane_2, extents[idx_2]]]
def rotate_pcd_around_axis(self, pcd, centroid, angle, axis):
T = get_transformation_matrix_about_arb_axis(centroid, angle, axis)
pcd_copy = o3d.geometry.PointCloud(pcd)
return pcd_copy.transform(T)
def find_all_grasping_candidates(self):
axis_and_extents = self.find_largest_axis()
main = axis_and_extents[0]
secondary = axis_and_extents[1]
third = axis_and_extents[2]
centroid = self.find_centroid()
extents = np.asarray(self.bbox.extent).copy()
max_extent_idx = np.argmax(extents)
extents[max_extent_idx] = 0.025
bbox = o3d.geometry.OrientedBoundingBox(centroid, self.bbox.R, extents)
points = np.asarray(self.pointcloud.points)
colors = np.asarray(self.pointcloud.colors)
grasp_idxs = bbox.get_point_indices_within_bounding_box(self.pointcloud.points)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points[grasp_idxs])
pcd.colors = o3d.utility.Vector3dVector(colors[grasp_idxs])
# rows = np.where(abs(points[:, max_idx] - centroid[max_idx]) < 0.008)
colors[grasp_idxs] = (255,0,0)
self.pointcloud.colors = o3d.utility.Vector3dVector(colors)
# Save full PCD for illustration purposes
self.save_pcd('pcd/graphics/grasp_candidates_highlighted_pcd.pcd')
# self.visualize_geometries([self.pointcloud,])
return grasp_idxs
def find_grasping_points(self):
rows = self.find_all_grasping_candidates()
# Transform into camera frame
# self.pointcloud.transform([[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
points = np.asarray(self.pointcloud.points)
colors = np.asarray(self.pointcloud.colors)
points = points[rows]
colors = colors[rows]
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
pcd.colors = o3d.utility.Vector3dVector(colors)
pcd.estimate_normals()
pcd = pcd.uniform_down_sample(2)
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors)
normals = np.asarray(pcd.normals)
curr = 0
last = len(points)
print(last)
# weights = np.asarray([2, -0.25, 2.5, -5, 5000, -100])
weights = np.asarray([1, 1])
best_partners = np.full((len(points), 3), -1.0)
score = 0
for i in range(0, last):
point = points[i]
normal = normals[i]
max_score = -32000
score = -32000
for j in range(0, last):
p = points[j]
n = normals[j]
distance = np.subtract(point, p)
k0 = weights[0] * np.linalg.norm(distance)
k1 = weights[1] * np.abs(point[2] - p[2])**2
score = k0 + k1
# print(f'{i} and {j}: {score}')
if score > max_score:
# print(f'updated max score for {i} to {score} with {j}')
max_score = score
max_idx = j
best_partners[i, 0] = max_idx
best_partners[i, 1] = score
# Set indices to indicate the best pairing
best_partners[i, 0] = max_idx
best_partners[max_idx, 0] = i
# Set score
best_partners[i, 1] = score
best_partners[max_idx, 1] = score
# Set mark to done so that we can save some computation time
# If a point is done, we won't consider possible pairings again
# We can do this because our evaluation function is symmetrical
best_partners[i, 2] = 1
best_partners[max_idx, 2] = 1
# Find best scoring point and its partner
if np.size(best_partners) != 0:
max_idx = np.argmax(best_partners[:, 1])
max_idx_partner = int(best_partners[max_idx, 0])
print(f'{max_idx} and {max_idx_partner}')
# Visualize with color
colors[max_idx] = [0,255,0]
colors[max_idx_partner] = [0,255,0]
pcd.colors = o3d.utility.Vector3dVector(colors)
pcd.points = o3d.utility.Vector3dVector(points)
# New point cloud since visualization is strange otherwise
grasp_points = [points[max_idx], points[max_idx_partner]]
print(grasp_points)
grasp_colors = [[0,255,0] for _ in range(len(grasp_points))]
grasp_pcd = o3d.geometry.PointCloud()
grasp_pcd.points = o3d.utility.Vector3dVector(grasp_points)
grasp_pcd.colors = o3d.utility.Vector3dVector(grasp_colors)
# self.grasp_pcd = grasp_pcd
self.grasp_pcd = pcd
return grasp_points
else:
return None
if __name__=='__main__':
# grasp = GraspCandidate('pcd/pointcloud_bottle_91.pcd')
grasp = GraspCandidate('pcd/pointcloud_teddy bear_315.pcd')
axis_extent, _, _ = grasp.find_largest_axis()
axis = axis_extent[0]
cen = grasp.find_centroid()
# pcd = grasp.rotate_pcd_around_axis(grasp.pointcloud, cen, math.pi, axis)
# cen = grasp.find_centroid()
# grasp.add_points_and_color_to_pcd([cen,], (255,0,0))
# grasp.find_all_grasping_candidates()
# grasp.find_grasping_points()
# grasp.save_pcd('pcd/graphics/final_pcd_output.pcd')
# grasp.visualize_geometries([grasp.pointcloud, grasp.grasp_pcd])
# pcd.transform([[1, 0, 0, 1], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
grasp.visualize_geometries([grasp.pointcloud])
# grasp.visualise_pcd()