forked from gr8joo/MVTCAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_epochs.py
285 lines (234 loc) · 10 KB
/
run_epochs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import sys, os
import numpy as np
from itertools import cycle
import tqdm
import json
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributions as dist
from torch.autograd import Variable
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from divergence_measures.kl_div import calc_kl_divergence
from divergence_measures.mm_div import poe
from eval_metrics.coherence import test_generation
from eval_metrics.representation import train_clf_lr_all_subsets
from eval_metrics.representation import test_clf_lr_all_subsets
from eval_metrics.sample_quality import calc_prd_score
from eval_metrics.likelihood import estimate_likelihoods
from plotting import generate_plots
from utils import utils
from utils.TBLogger import TBLogger
# global variables
# TODO: Define seed in main_mmnist
SEED = 0
SAMPLE1 = None
if SEED is not None:
np.random.seed(SEED)
torch.manual_seed(SEED)
random.seed(SEED)
def calc_log_probs(exp, result, batch):
mods = exp.modalities;
log_probs = dict()
weighted_log_prob = 0.0;
for m, m_key in enumerate(mods.keys()):
mod = mods[m_key]
log_probs[mod.name] = -mod.calc_log_prob(result['rec'][mod.name],
batch[mod.name],
exp.flags.batch_size);
weighted_log_prob += exp.rec_weights[mod.name]*log_probs[mod.name];
return log_probs, weighted_log_prob;
def calc_klds(exp, result):
latents = result['latents']['subsets'];
klds = dict();
for m, key in enumerate(latents.keys()):
mu, logvar = latents[key];
klds[key] = calc_kl_divergence(mu, logvar,
norm_value=exp.flags.batch_size)
return klds;
def calc_klds_style(exp, result):
latents = result['latents']['modalities'];
klds = dict();
for m, key in enumerate(latents.keys()):
if key.endswith('style'):
mu, logvar = latents[key];
klds[key] = calc_kl_divergence(mu, logvar,
norm_value=exp.flags.batch_size)
return klds;
def calc_style_kld(exp, klds):
mods = exp.modalities;
style_weights = exp.style_weights;
weighted_klds = 0.0;
for m, m_key in enumerate(mods.keys()):
weighted_klds += style_weights[m_key]*klds[m_key+'_style'];
return weighted_klds;
def calc_klds_cvib(exp, result):
latents = result['latents']['modalities'];
joint_mu, joint_logvar = result['latents']['joint']
klds = dict();
kld_losses = 0.0
for m, key in enumerate(latents.keys()):
if 'style' not in key:
mu, logvar = latents[key];
klds[key] = calc_kl_divergence(joint_mu, joint_logvar, mu, logvar,
norm_value=exp.flags.batch_size)
kld_losses += klds[key]
# import pdb; pdb.set_trace()
return klds, kld_losses
def basic_routine_epoch(exp, batch):
# set up weights
beta_style = exp.flags.beta_style;
beta_content = exp.flags.beta_content;
beta = exp.flags.beta;
rec_weight = 1.0;
mm_vae = exp.mm_vae;
batch_d = batch
# batch_l = batch[1];
mods = exp.modalities;
for k, m_key in enumerate(batch_d.keys()):
batch_d[m_key] = Variable(batch_d[m_key]).to(exp.flags.device);
results = mm_vae(batch_d);
log_probs, weighted_log_prob = calc_log_probs(exp, results, batch);
group_divergence = results['joint_divergence'];
klds = calc_klds(exp, results);
if exp.flags.factorized_representation:
klds_style = calc_klds_style(exp, results);
if exp.flags.modality_ivw:
if exp.flags.factorized_representation:
kld_style = calc_style_kld(exp, klds_style);
else:
kld_style = 0.0;
n_views = exp.num_modalities
tc_ratio = exp.flags.tc_ratio
# print('TC_RATIO:', tc_ratio)
# print('BETA:', beta)
klds_cvib_dict, klds_cvib = calc_klds_cvib(exp, results)
rec_weight = (n_views - tc_ratio) / n_views
cvib_weight = tc_ratio / n_views # 0.3
vib_weight = 1 - tc_ratio # 0.1
kld_weighted = cvib_weight * klds_cvib + vib_weight * group_divergence
total_loss = rec_weight * weighted_log_prob + beta * kld_weighted
elif (exp.flags.modality_jsd or exp.flags.modality_moe
or exp.flags.joint_elbo):
if exp.flags.factorized_representation:
kld_style = calc_style_kld(exp, klds_style);
else:
kld_style = 0.0;
kld_content = group_divergence;
kld_weighted = beta_style * kld_style + beta_content * kld_content;
total_loss = rec_weight * weighted_log_prob + beta * kld_weighted;
elif exp.flags.modality_poe:
klds_joint = {'content': group_divergence,
'style': dict()};
elbos = dict();
for m, m_key in enumerate(mods.keys()):
mod = mods[m_key];
if exp.flags.factorized_representation:
kld_style_m = klds_style[m_key + '_style'];
else:
kld_style_m = 0.0;
klds_joint['style'][m_key] = kld_style_m;
if exp.flags.poe_unimodal_elbos:
i_batch_mod = {m_key: batch_d[m_key]};
r_mod = mm_vae(i_batch_mod);
log_prob_mod = -mod.calc_log_prob(r_mod['rec'][m_key],
batch_d[m_key],
exp.flags.batch_size);
log_prob = {m_key: log_prob_mod};
klds_mod = {'content': klds[m_key],
'style': {m_key: kld_style_m}};
elbo_mod = utils.calc_elbo(exp, m_key, log_prob, klds_mod);
# elbo_mod = rec_weight * exp.rec_weights[m_key] * log_prob_mod + beta*klds[m_key]
elbos[m_key] = elbo_mod;
elbo_joint = utils.calc_elbo(exp, 'joint', log_probs, klds_joint);
# elbo_joint = rec_weight * weighted_log_prob + beta*group_divergence
elbos['joint'] = elbo_joint;
total_loss = sum(elbos.values())
out_basic_routine = dict();
out_basic_routine['results'] = results;
out_basic_routine['log_probs'] = log_probs;
out_basic_routine['total_loss'] = total_loss;
out_basic_routine['klds'] = klds;
return out_basic_routine;
def train(epoch, exp, tb_logger):
mm_vae = exp.mm_vae;
mm_vae.train();
exp.mm_vae = mm_vae;
d_loader = DataLoader(exp.dataset_train, batch_size=exp.flags.batch_size,
shuffle=True,
num_workers=8, drop_last=True);
for iteration, batch in enumerate(d_loader):
basic_routine = basic_routine_epoch(exp, batch);
results = basic_routine['results'];
total_loss = basic_routine['total_loss'];
klds = basic_routine['klds'];
log_probs = basic_routine['log_probs'];
# backprop
exp.optimizer.zero_grad()
total_loss.backward()
exp.optimizer.step()
# print(iteration)
tb_logger.write_training_logs(results, total_loss, log_probs, klds);
def test(epoch, exp, tb_logger):
with torch.no_grad():
mm_vae = exp.mm_vae;
mm_vae.eval();
exp.mm_vae = mm_vae;
# set up weights
beta_style = exp.flags.beta_style;
beta_content = exp.flags.beta_content;
beta = exp.flags.beta;
rec_weight = 1.0;
d_loader = DataLoader(exp.dataset_test, batch_size=exp.flags.batch_size,
shuffle=True,
num_workers=8, drop_last=True);
for iteration, batch in enumerate(d_loader):
basic_routine = basic_routine_epoch(exp, batch);
results = basic_routine['results'];
total_loss = basic_routine['total_loss'];
klds = basic_routine['klds'];
log_probs = basic_routine['log_probs'];
tb_logger.write_testing_logs(results, total_loss, log_probs, klds);
# plots = generate_plots(exp, epoch);
# tb_logger.write_plots(plots, epoch);
if (epoch + 1) % exp.flags.eval_freq == 0:
# if exp.flags.eval_lr:
# clf_lr = train_clf_lr_all_subsets(exp);
# lr_eval = test_clf_lr_all_subsets(epoch, clf_lr, exp);
# tb_logger.write_lr_eval(lr_eval);
# if exp.flags.use_clf:
# gen_eval = test_generation(epoch, exp);
# tb_logger.write_coherence_logs(gen_eval);
if exp.flags.calc_nll:
lhoods = estimate_likelihoods(exp);
tb_logger.write_lhood_logs(lhoods);
if exp.flags.calc_prd and ((epoch + 1) % exp.flags.eval_freq_fid == 0):
prd_scores = calc_prd_score(exp);
tb_logger.write_prd_scores(prd_scores)
def run_epochs(exp):
# SEED = exp.flags.seed
# np.random.seed(SEED)
# torch.manual_seed(SEED)
# random.seed(SEED)
# initialize summary writer
writer = SummaryWriter(exp.flags.dir_logs)
tb_logger = TBLogger(exp.flags.str_experiment, writer)
str_flags = utils.save_and_log_flags(exp.flags);
tb_logger.writer.add_text('FLAGS', str_flags, 0)
print('training epochs progress:')
for epoch in tqdm.tqdm(range(exp.flags.start_epoch, exp.flags.end_epoch)):
# utils.printProgressBar(epoch, exp.flags.end_epoch)
train(epoch, exp, tb_logger);
if (epoch + 1) % 5 == 0:# or (epoch + 1) == exp.flags.end_epoch:
test(epoch, exp, tb_logger);
# save checkpoints after every 5 epochs
# if (epoch + 1) % 5 == 0 or (epoch + 1) == exp.flags.end_epoch:
if (epoch + 1) == exp.flags.eval_freq_fid:#exp.flags.end_epoch:
dir_network_epoch = os.path.join(exp.flags.dir_checkpoints, str(epoch).zfill(4));
if not os.path.exists(dir_network_epoch):
os.makedirs(dir_network_epoch);
exp.mm_vae.save_networks()
torch.save(exp.mm_vae.state_dict(),
os.path.join(dir_network_epoch, exp.flags.mm_vae_save))