-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
152 lines (120 loc) · 4.96 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from replay_memory import ReplayMemory
from variant import *
from utils import visualize_predictions
import logger
from robustness_eval import *
import time
def main():
args = VARIANT
root_dir = args['log_path']
env = get_env_from_name(args)
args['state_dim'] = env.observation_space.shape[0]
args['act_dim'] = env.action_space.shape[0]
args['s_bound_low'] = env.observation_space.low
args['s_bound_high'] = env.observation_space.high
args['a_bound_low'] = env.action_space.low
args['a_bound_high'] = env.action_space.high
os.makedirs(root_dir, exist_ok=True)
if args['train_model']:
store_hyperparameters(root_dir, args)
for i in range(args['start_of_trial'], args['start_of_trial'] + args['num_of_trials']):
args['log_path'] = root_dir + '/' + str(i)
print('logging to ' + args['log_path'])
model = train(args, env)
if args['eval_control']:
args['log_path'] = root_dir
if args['store_hyperparameter']:
store_hyperparameters(root_dir, args)
controller = get_controller(model, args)
controller._build_controller()
controller.check_controllability()
if args['evaluation_form'] == 'dynamic':
dynamic(controller, env, args, args)
elif args['evaluation_form'] == 'constant_impulse':
constant_impulse(controller, env, args)
# simple_validation(controller, env, args)
tf.reset_default_graph()
def train(args, env):
build_func = get_model(args['alg_name'])
model = build_func(args)
if args['train_model'] is False:
if args['env_name'] == 'linear_sys':
model.A_result = env.A.T
model.B_result = env.B.T
else:
success = model.restore(args['log_path'])
if not success:
print(args['log_path'] + ' does not exist')
raise NotImplementedError
return model
if args['continue_training']:
success = model.restore(args['log_path'])
if not success:
print(args['log_path'] + ' does not exist')
raise NotImplementedError
logger.configure(dir=args['log_path'], format_strs=['csv'])
# Generate data
[shift, scale, shift_u, scale_u] = model.get_shift_and_scale()
# Generate training data
replay_memory = ReplayMemory(args, shift, scale, shift_u, scale_u, env, predict_evolution=True)
model.set_shift_and_scale(replay_memory)
# Define counting variables
count = 0
count_decay = 0
decay_epochs = []
# Initialize variable to track validation score over time
old_score = 1e20
lr = args['learning_rate']
for e in range(args['num_epochs']):
# Initialize loss
loss = 0.0
val_loss = 0.0
loss_count = 0
b = 0
replay_memory.reset_batchptr_train()
# Loop over batches
while b < replay_memory.n_batches_train:
start = time.time()
# Get inputs
batch_dict = replay_memory.next_batch_train()
out = model.learn(batch_dict, lr, args)
b += 1
model.store_Koopman_operator(replay_memory)
# Evaluate loss on validation set
score = model.calc_val_loss(replay_memory)
[logger.logkv(key, out[key]) for key in out.keys()]
# logger.logkv('train_loss', loss)
logger.logkv('epoch', e)
logger.logkv('validation_loss', score)
logger.logkv('learning_rate', lr)
logger.dumpkvs()
string_to_print = [args['alg_name'] + args['additional_description'], '|']
string_to_print.extend(['epoch:', str(e), '|'])
[string_to_print.extend([key, ':', str(round(out[key], 2)), '|']) for key in out.keys()]
string_to_print.extend(['validation_loss:', str(round(score, 2)), '|'])
string_to_print.extend(['learning_rate:', str(round(lr, 4)), '|'])
print(''.join(string_to_print))
# print('Validation Loss: {0:f}'.format(score))
# Set learning rate
if (old_score - score) < -0.01 and e >= 8:
count_decay += 1
decay_epochs.append(e)
# if len(decay_epochs) >= 3 and np.sum(np.diff(decay_epochs)[-2:]) == 2:
# break
# lr = args['learning_rate'] * (args['decay_rate'] ** count_decay)
# print('setting learning rate to ', lr)
## stair decay
if (e + 1) % args['decay_steps'] == 0:
lr = lr * args['decay_rate']
# ## constant decay
# frac = 1.0 - e / args['num_epochs']
# lr = args['learning_rate'] * frac
# print('setting learning rate to ', lr)
old_score = score
if e % args['save_frequency'] == 0:
model.save_result(args['log_path'], verbose=False )
# print("model saved to {}".format(args['log_path']))
visualize_predictions(args, model, replay_memory, env, e)
return model
if __name__ == '__main__':
main()