Skip to content

Implementation of Multi-State Constraint Kalman Filter (MSCKF)

Notifications You must be signed in to change notification settings

sr-bang/Stereo_Visual_Inertial_Odometry

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Visual Inertial Odometry

MSCKF (Multi-State Constraint Kalman Filter) is an EKF based tightly-coupled visual-inertial odometry algorithm. S-MSCKF is MSCKF's stereo version. This project is a Python reimplemention of S-MSCKF, the code is directly translated from official C++ implementation KumarRobotics/msckf_vio.

For algorithm details, please refer to:

  • Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight, Ke Sun et al. (2017)
  • A Multi-State Constraint Kalman Filterfor Vision-aided Inertial Navigation, Anastasios I. Mourikis et al. (2006)

Requirements

  • Python 3.6+
  • numpy
  • scipy
  • cv2
  • pangolin (optional, for trajectory/poses visualization)

Dataset

  • EuRoC MAV: visual-inertial datasets collected on-board a MAV. The datasets contain stereo images, synchronized IMU measurements, and ground-truth.
    This project implements data loader and data publisher for EuRoC MAV dataset.

To run the code

python vio.py --view --path path/to/your/EuRoC_MAV_dataset/MH_01_easy
or
python vio.py --path path/to/your/EuRoC_MAV_dataset/MH_01_easy (no visualization)

Results

Result for MH_01_easy dataset

Undistorted

License

Follow license of msckf_vio.

References

  1. https://rbe549.github.io/spring2023/proj/p4/
  2. https://github.com/uoip/stereo_msckf

About

Implementation of Multi-State Constraint Kalman Filter (MSCKF)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages