Joint Learning of Hyperbolic Label Embeddings for Hierarchical Multi-label Classification
Soumya Chatterjee*, Ayush Maheshwari*, Ganesh Ramakrishnan and Saketha Nath Jagaralpudi
European Chapter of the Association for Computational Linguistics (EACL) 2021
environment.yml
has the depedencies
Download glove.6B.300d.txt
from here in GloVe
folder
Please refer to HiLAP for the dataset instructions. Put the required dataset files in folders rcv1
, yelp
or nyt
and run data_utils/gen_json_<dataset>.py
for preprocessing the data.
Run main.py
using the arguments --exp_name
--flat
for Model_flt
--cascaded_step1
and --cascaded_step2
for Model_cas
--joint
for Model_jnt
Specify the dataset using --dataset
For examples, please refer Synthetic/all_expts.sh
.
- HiLAP for data processing and TextCNN model
- Poincare Embeddings for Poincare utils
bert-base-uncased-vocab.txt
is from Hugging Face Tokenizers
@inproceedings{chatterjee-etal-2021-joint,
title = "Joint Learning of Hyperbolic Label Embeddings for Hierarchical Multi-label Classification",
author = "Chatterjee, Soumya and Maheshwari, Ayush and Ramakrishnan, Ganesh and Jagaralpudi, Saketha Nath",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
year = "2021",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.eacl-main.247",
pages = "2829--2841",
}