Skip to content

Commit

Permalink
[js/web/training] Implemented runEvalStep & runOptimizerStep (microso…
Browse files Browse the repository at this point in the history
…ft#18259)

### Description
* implemented runEvalStep and runOptimizerStep
* added hasEvalModel and hasOptimizerModel boolean fields in
TrainingSession representation
* added evalInputNames and evalOutputNames fields to
TrainingSessionHandler & TrainingSession
* removed the inputNamesEncoded and outputNamesEncoded fields from
TrainingSessionHandler -- since none of the training methods require the
input names and output names as parameters, there's no need to store
them.

### Motivation and Context
* part of the work for implementing web bindings for training
* previous PR: microsoft#18250

---------

Co-authored-by: Ashwini Khade <[email protected]>
  • Loading branch information
carzh and askhade authored Dec 4, 2023
1 parent dafc390 commit bff0bca
Show file tree
Hide file tree
Showing 5 changed files with 242 additions and 61 deletions.
7 changes: 7 additions & 0 deletions common/lib/backend.ts
Original file line number Diff line number Diff line change
Expand Up @@ -45,9 +45,16 @@ export interface InferenceSessionHandler extends SessionHandler {
* @ignore
*/
export interface TrainingSessionHandler extends SessionHandler {
readonly evalInputNames: readonly string[];
readonly evalOutputNames: readonly string[];

runTrainStep(
feeds: SessionHandler.FeedsType, fetches: SessionHandler.FetchesType,
options: InferenceSession.RunOptions): Promise<SessionHandler.ReturnType>;
runOptimizerStep(options: InferenceSession.RunOptions): Promise<void>;
runEvalStep(
feeds: SessionHandler.FeedsType, fetches: SessionHandler.FetchesType,
options: InferenceSession.RunOptions): Promise<SessionHandler.ReturnType>;

getParametersSize(trainableOnly: boolean): Promise<number>;
loadParametersBuffer(array: Uint8Array, trainableOnly: boolean): Promise<void>;
Expand Down
68 changes: 57 additions & 11 deletions common/lib/training-session-impl.ts
Original file line number Diff line number Diff line change
Expand Up @@ -18,18 +18,37 @@ const noBackendErrMsg: string = 'Training backend could not be resolved. ' +
'Make sure you\'re using the correct configuration & WebAssembly files.';

export class TrainingSession implements TrainingSessionInterface {
private constructor(handler: TrainingSessionHandler) {
private constructor(handler: TrainingSessionHandler, hasOptimizerModel: boolean, hasEvalModel: boolean) {
this.handler = handler;
this.hasOptimizerModel = hasOptimizerModel;
this.hasEvalModel = hasEvalModel;
}
private handler: TrainingSessionHandler;
private hasOptimizerModel: boolean;
private hasEvalModel: boolean;

get inputNames(): readonly string[] {
get trainingInputNames(): readonly string[] {
return this.handler.inputNames;
}
get outputNames(): readonly string[] {
get trainingOutputNames(): readonly string[] {
return this.handler.outputNames;
}

get evalInputNames(): readonly string[] {
if (this.hasEvalModel) {
return this.handler.evalInputNames;
} else {
throw new Error('This training session has no evalModel loaded.');
}
}
get evalOutputNames(): readonly string[] {
if (this.hasEvalModel) {
return this.handler.evalOutputNames;
} else {
throw new Error('This training session has no evalModel loaded.');
}
}

static async create(trainingOptions: TrainingSessionCreateOptions, sessionOptions?: SessionOptions):
Promise<TrainingSession> {
const evalModel: string|Uint8Array = trainingOptions.evalModel || '';
Expand All @@ -43,7 +62,7 @@ export class TrainingSession implements TrainingSessionInterface {
if (backend.createTrainingSessionHandler) {
const handler = await backend.createTrainingSessionHandler(
trainingOptions.checkpointState, trainingOptions.trainModel, evalModel, optimizerModel, options);
return new TrainingSession(handler);
return new TrainingSession(handler, !!trainingOptions.optimizerModel, !!trainingOptions.evalModel);
} else {
throw new Error(noBackendErrMsg);
}
Expand All @@ -53,13 +72,18 @@ export class TrainingSession implements TrainingSessionInterface {
* Helper function for runTrainStep and future runStep methods that handles the type-narrowing conversion from
* the given parameters to SessionHandler.FetchesType and RunOptions.
*
* @param inputNames the feeds object is checked that they contain all input names in the provided list of input
* names.
* @param outputNames the fetches object is checked that their keys match up with valid names in the list of output
* names.
* @param feeds the required input
* @param arg1 narrowed & converted into the SessionHandler.FetchesType or RunOptions object
* @param arg2 optional RunOptions object.
* @returns
*/
typeNarrowingForRunStep(feeds: FeedsType, arg1?: FetchesType|RunOptions, arg2?: RunOptions):
[SessionHandler.FetchesType, RunOptions] {
typeNarrowingForRunStep(
inputNames: readonly string[], outputNames: readonly string[], feeds: FeedsType, arg1?: FetchesType|RunOptions,
arg2?: RunOptions): [SessionHandler.FetchesType, RunOptions] {
const fetches: {[name: string]: OnnxValue|null} = {};
let options: RunOptions = {};
// check inputs
Expand Down Expand Up @@ -88,7 +112,7 @@ export class TrainingSession implements TrainingSessionInterface {
if (typeof name !== 'string') {
throw new TypeError('\'fetches\' must be a string array or an object.');
}
if (this.outputNames.indexOf(name) === -1) {
if (outputNames.indexOf(name) === -1) {
throw new RangeError(`'fetches' contains invalid output name: ${name}.`);
}
fetches[name] = null;
Expand All @@ -104,7 +128,7 @@ export class TrainingSession implements TrainingSessionInterface {
// if any output name is present and its value is valid OnnxValue, we consider it fetches
let isFetches = false;
const arg1Keys = Object.getOwnPropertyNames(arg1);
for (const name of this.outputNames) {
for (const name of outputNames) {
if (arg1Keys.indexOf(name) !== -1) {
const v = (arg1 as InferenceSession.NullableOnnxValueMapType)[name];
if (v === null || v instanceof Tensor) {
Expand All @@ -130,15 +154,15 @@ export class TrainingSession implements TrainingSessionInterface {
}

// check if all inputs are in feed
for (const name of this.inputNames) {
for (const name of inputNames) {
if (typeof feeds[name] === 'undefined') {
throw new Error(`input '${name}' is missing in 'feeds'.`);
}
}

// if no fetches is specified, we use the full output names list
if (isFetchesEmpty) {
for (const name of this.outputNames) {
for (const name of outputNames) {
fetches[name] = null;
}
}
Expand Down Expand Up @@ -171,11 +195,33 @@ export class TrainingSession implements TrainingSessionInterface {
runTrainStep(feeds: FeedsType, options?: RunOptions): Promise<ReturnType>;
runTrainStep(feeds: FeedsType, fetches: FetchesType, options?: RunOptions): Promise<ReturnType>;
async runTrainStep(feeds: FeedsType, arg1?: FetchesType|RunOptions, arg2?: RunOptions): Promise<ReturnType> {
const [fetches, options] = this.typeNarrowingForRunStep(feeds, arg1, arg2);
const [fetches, options] =
this.typeNarrowingForRunStep(this.trainingInputNames, this.trainingOutputNames, feeds, arg1, arg2);
const results = await this.handler.runTrainStep(feeds, fetches, options);
return this.convertHandlerReturnTypeToMapOfTensors(results);
}

async runOptimizerStep(options?: InferenceSession.RunOptions|undefined): Promise<void> {
if (this.hasOptimizerModel) {
await this.handler.runOptimizerStep(options || {});
} else {
throw new Error('This TrainingSession has no OptimizerModel loaded.');
}
}

runEvalStep(feeds: FeedsType, options?: RunOptions|undefined): Promise<ReturnType>;
runEvalStep(feeds: FeedsType, fetches: FetchesType, options?: RunOptions|undefined): Promise<ReturnType>;
async runEvalStep(feeds: FeedsType, arg1?: FetchesType|RunOptions, arg2?: RunOptions): Promise<ReturnType> {
if (this.hasEvalModel) {
const [fetches, options] =
this.typeNarrowingForRunStep(this.evalInputNames, this.evalOutputNames, feeds, arg1, arg2);
const results = await this.handler.runEvalStep(feeds, fetches, options);
return this.convertHandlerReturnTypeToMapOfTensors(results);
} else {
throw new Error('This TrainingSession has no EvalModel loaded.');
}
}

async getParametersSize(trainableOnly = true): Promise<number> {
return this.handler.getParametersSize(trainableOnly);
}
Expand Down
53 changes: 48 additions & 5 deletions common/lib/training-session.ts
Original file line number Diff line number Diff line change
Expand Up @@ -39,14 +39,46 @@ export interface TrainingSession {
* @param feeds - Representation of the model input.
* @param fetches - Representation of the model output.
* detail.
* @param options - Optional. A set of options that controls the behavior of model inference.
* @param options - Optional. A set of options that controls the behavior of model training.
* @returns A promise that resolves to a map, which uses output names as keys and OnnxValue as corresponding
values.
*/
runTrainStep(
feeds: InferenceSession.FeedsType, fetches: InferenceSession.FetchesType,
options?: InferenceSession.RunOptions): Promise<InferenceSession.ReturnType>;

/**
* Runs a single optimizer step, which performs weight updates for the trainable parameters using the optimizer model.
*
* @param options - Optional. A set of options that controls the behavior of model optimizing.
*/
runOptimizerStep(options?: InferenceSession.RunOptions): Promise<void>;

/**
* Run a single eval step with the given inputs and options using the eval model.
*
* @param feeds - Representation of the model input.
* @param options - Optional. A set of options that controls the behavior of model eval step.
* @returns A promise that resolves to a map, which uses output names as keys and OnnxValue as corresponding
values.
*/
runEvalStep(feeds: InferenceSession.FeedsType, options?: InferenceSession.RunOptions):
Promise<InferenceSession.ReturnType>;

/**
* Run a single eval step with the given inputs and options using the eval model.
*
* @param feeds - Representation of the model input.
* @param fetches - Representation of the model output.
* detail.
* @param options - Optional. A set of options that controls the behavior of model eval step.
* @returns A promise that resolves to a map, which uses output names as keys and OnnxValue as corresponding
values.
*/
runEvalStep(
feeds: InferenceSession.FeedsType, fetches: InferenceSession.FetchesType,
options?: InferenceSession.RunOptions): Promise<InferenceSession.ReturnType>;

// #endregion

// #region copy parameters
Expand Down Expand Up @@ -90,14 +122,25 @@ export interface TrainingSession {
// #region metadata

/**
* Get input names of the loaded model.
* Get input names of the loaded training model.
*/
readonly inputNames: readonly string[];
readonly trainingInputNames: readonly string[];

/**
* Get output names of the loaded model.
* Get output names of the loaded training model.
*/
readonly outputNames: readonly string[];
readonly trainingOutputNames: readonly string[];

/**
* Get input names of the loaded eval model. Is an empty array if no eval model is loaded.
*/
readonly evalInputNames: readonly string[];

/**
* Get output names of the loaded eval model. Is an empty array if no eval model is loaded.
*/
readonly evalOutputNames: readonly string[];

// #endregion
}

Expand Down
36 changes: 30 additions & 6 deletions web/lib/wasm/session-handler-training.ts
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ import {env, InferenceSession, OnnxValue, SessionHandler, Tensor, TrainingSessio
import {SerializableModeldata, TensorMetadata} from './proxy-messages';
import {decodeTensorMetadata, encodeTensorMetadata} from './session-handler-inference';
import {createSessionAllocate, initRuntime, isOrtEnvInitialized} from './wasm-core-impl';
import {createCheckpointHandle, createTrainingSessionHandle, getContiguousParameters, getParametersSize, loadParametersBuffer, releaseTrainingSessionAndCheckpoint, runTrainStep} from './wasm-training-core-impl';
import {createCheckpointHandle, createTrainingSessionHandle, getContiguousParameters, getModelInputOutputNames, getParametersSize, loadParametersBuffer, releaseTrainingSessionAndCheckpoint, runEvalStep, runOptimizerStep, runTrainStep} from './wasm-training-core-impl';

export class OnnxruntimeWebAssemblyTrainingSessionHandler implements TrainingSessionHandler {
private sessionId: number;
Expand All @@ -15,8 +15,8 @@ export class OnnxruntimeWebAssemblyTrainingSessionHandler implements TrainingSes
inputNames: string[];
outputNames: string[];

inputEncodedNames: number[];
outputEncodedNames: number[];
evalInputNames: string[] = [];
evalOutputNames: string[] = [];

async uriOrBufferToHeap(uriOrBuffer: string|Uint8Array): Promise<SerializableModeldata> {
let buffer: Uint8Array;
Expand Down Expand Up @@ -51,8 +51,12 @@ export class OnnxruntimeWebAssemblyTrainingSessionHandler implements TrainingSes
}

this.checkpointId = createCheckpointHandle(checkpointData);
[[this.sessionId, this.inputNames, this.outputNames], this.inputEncodedNames, this.outputEncodedNames] =
this.sessionId =
createTrainingSessionHandle(this.checkpointId, trainModelData, evalModelData, optimizerModelData, options);
[this.inputNames, this.outputNames] = getModelInputOutputNames(this.sessionId, false);
if (evalModelUriOrBuffer !== '') {
[this.evalInputNames, this.evalOutputNames] = getModelInputOutputNames(this.sessionId, true);
}
}

/**
Expand Down Expand Up @@ -118,6 +122,27 @@ export class OnnxruntimeWebAssemblyTrainingSessionHandler implements TrainingSes
return this.convertTensorMetadataToReturnType(results, outputArray, outputIndices);
}

async runOptimizerStep(options: InferenceSession.RunOptions): Promise<void> {
await runOptimizerStep(this.sessionId, options);
}

async runEvalStep(
feeds: SessionHandler.FeedsType, fetches: SessionHandler.FetchesType,
options: InferenceSession.RunOptions): Promise<SessionHandler.ReturnType> {
const [, inputIndices, inputs] = this.convertMapIntoValuesArrayAndIndicesArray<Tensor, TensorMetadata>(
feeds, this.evalInputNames,
(t, i): TensorMetadata => encodeTensorMetadata(t, () => `input "${this.evalInputNames[inputIndices[i]]}"`));

const [outputArray, outputIndices, outputs] =
this.convertMapIntoValuesArrayAndIndicesArray<Tensor|null, TensorMetadata|null>(
fetches, this.evalOutputNames,
(t, i): TensorMetadata|null =>
t ? encodeTensorMetadata(t, () => `output "${this.evalOutputNames[outputIndices[i]]}"`) : null);

const results = await runEvalStep(this.sessionId, inputIndices, inputs, outputIndices, outputs, options);
return this.convertTensorMetadataToReturnType(results, outputArray, outputIndices);
}

async getParametersSize(trainableOnly: boolean): Promise<number> {
return getParametersSize(this.sessionId, trainableOnly);
}
Expand All @@ -131,7 +156,6 @@ export class OnnxruntimeWebAssemblyTrainingSessionHandler implements TrainingSes
}

async dispose(): Promise<void> {
return releaseTrainingSessionAndCheckpoint(
this.checkpointId, this.sessionId, this.inputEncodedNames, this.outputEncodedNames);
return releaseTrainingSessionAndCheckpoint(this.checkpointId, this.sessionId);
}
}
Loading

0 comments on commit bff0bca

Please sign in to comment.