Skip to content

Code supporting the paper Collaborative Decision Making Using Action Suggestions.

Notifications You must be signed in to change notification settings

sisl/action_suggestions

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Repository for Collaborative Decision Making Using Action Suggestions

This repository contains the code used for the experiments in the paper Collaborative Decision Making Using Action Suggestions. You can find the paper here.

Setting up the environment

The development occurred using Julia v1.7 and v1.8. We recommend using the latest version of Julia.

First, clone the repo, change to the main folder, and run Julia.

git clone [email protected]:sisl/action_suggestions.git
cd  action_suggestions
julia

We first need to activate the environment and include the supporting scripts. This process is scripted in setup.jl. You can run this file by:

julia> include("setup.jl")

This repo contains polices and action value functions for RockSample(8, 4, 10, -1), Tag with the modified transition function, and the original implementation of Tag. You can start running those simulations immediately. Reference the Running Simulations section. To simulate the RockSample(7, 8, 20, 0) environment, you will need to generate the policy and action value matrix. Reference the Generating Policies section for directions on completing that process. The problems are referenced using the :rs84, :tag, and :tag_orig_tx Symbols. The RockSample(7, 8, 10, 0) problem has the :rs78 Symbol defined and ready for use after a policy and action value matrix is generated.

Running Simulations

The simulation function is defined in run_sims.jl and is the run_sim function. See the doc string for detailed information about the arguments for this function. This file should be included when running the setup.jl script. However, if it was not, we can include this file by

julia> include("src/run_sims.jl")

Single Simulation

We can run a single simulation of the RockSample(8, 4, 10, -1) scenario by

julia> run_sim(:rs84)

This command should produce an output similar to

Loading problem and policy...complete!
Agent: normal
         Metric |            Mean |    Standard Dev |  Standard Error |       +/- 95 CI
--------------- | --------------- | --------------- | --------------- | ---------------
         Reward |        11.07420 |             NaN |             NaN |             NaN
          Steps |        15.00000 |             NaN |             NaN |             NaN
  # Suggestions |         0.00000 |             NaN |             NaN |             NaN
  # Sugg / Step |         0.00000 |             NaN |             NaN |             NaN

Verbose

Details at each step can be output by setting the verbose keyword to true. A summary of key parameters will be output to the REPL at each time step. Recommend using verbose for single runs only (i.e. num_sims = 1)!

Visualize

A visual depiction of the scenario can be output by setting the visualize keyword to true. Recommend using visualize for single runs only! In each scenario, a visualization of the belief is shown along with images before the suggestion is used to update the belief and after the suggestion is used to update the belief. The actions depicted on the bottom on in reference to the selected action with the displayed belief.

Multiple Simulations

We can run multiple situations by using the num_sims keyword argument

julia> run_sim(:tag; num_sims=10)

This command should produce an output similar to

Loading problem and policy...complete!
Running Simulations 100%|██████████████████████████████████████████████████| Time: 0:00:16 ( 1.61  s/it)
Agent: normal
         Metric |            Mean |    Standard Dev |  Standard Error |       +/- 95 CI
--------------- | --------------- | --------------- | --------------- | ---------------
         Reward |       -10.08101 |         6.93397 |         2.19272 |         4.29772
          Steps |        27.70000 |        16.22789 |         5.13171 |        10.05815
  # Suggestions |         0.00000 |         0.00000 |         0.00000 |         0.00000
  # Sugg / Step |         0.00000 |         0.00000 |         0.00000 |         0.00000

More Examples

julia> run_sim(:rs84; num_sims=50, agent=:noisy, λ=1.0)
Loading problem and policy...complete!
Running Simulations 100%|██████████████████████████████████████████████████| Time: 0:00:00 ( 4.73 ms/it)
Agent: noisy, λ = 1.00
         Metric |            Mean |    Standard Dev |  Standard Error |       +/- 95 CI
--------------- | --------------- | --------------- | --------------- | ---------------
         Reward |        16.39763 |         3.55900 |         0.50332 |         0.98650
          Steps |        17.44000 |         5.24564 |         0.74185 |         1.45402
  # Suggestions |         5.42000 |         1.57907 |         0.22331 |         0.43770
  # Sugg / Step |         0.32376 |         0.08556 |         0.01210 |         0.02372
julia> run_sim(:tag; num_sims=50, agent=:scaled, τ=0.75)
Loading problem and policy...complete!
Running Simulations 100%|██████████████████████████████████████████████████| Time: 0:00:31 ( 0.63  s/it)
Agent: scaled, τ = 0.75
         Metric |            Mean |    Standard Dev |  Standard Error |       +/- 95 CI
--------------- | --------------- | --------------- | --------------- | ---------------
         Reward |        -1.61092 |         4.45021 |         0.62936 |         1.23354
          Steps |        11.34000 |         6.36191 |         0.89971 |         1.76343
  # Suggestions |         2.84000 |         2.15103 |         0.30420 |         0.59624
  # Sugg / Step |         0.24639 |         0.10154 |         0.01436 |         0.02815
julia> run_sim(:rs84; num_sims=50, agent=:scaled, τ=0.75, msg_reception_rate=0.75)
Loading problem and policy...complete!
Running Simulations 100%|██████████████████████████████████████████████████| Time: 0:00:00 (11.81 ms/it)
Agent: scaled, τ = 0.75
         Metric |            Mean |    Standard Dev |  Standard Error |       +/- 95 CI
--------------- | --------------- | --------------- | --------------- | ---------------
         Reward |        15.58007 |         3.58591 |         0.50712 |         0.99396
          Steps |        17.70000 |         6.02122 |         0.85153 |         1.66900
  # Suggestions |         2.24000 |         0.79693 |         0.11270 |         0.22090
  # Sugg / Step |         0.14602 |         0.09124 |         0.01290 |         0.02529

Function run_sim

Runs simulations and reports key metrics.

Arguments

Keyword Arguments

  • num_steps::Int=50: number of steps in each simulation
  • num_sims::Int=1: number of simulations to run
  • verbose::Bool=false: print out details of each step
  • visualize::Bool=false: render the environment at each step (2x per step)
  • agent::Symbol=:normal: Which agent to simulate (see AGENTS for options)
  • ν=1.0: hyperparameter for the naive agent (percent of suggestions to follow)
  • τ=1.0: hyperparameter for the scaled agent
  • λ=1.0: hyperparameter for the noisy agent
  • max_suggestions=Inf: Limit of the number of suggestions the agent can receive
  • msg_reception_rate=1.0: Reception rate of the agent for suggestions
  • perfect_v_random=1.0: Rate of perfect vs random suggestions (1.0=perfect, 0.0=random)
  • init_rocks=nothing: For RockSamplePOMDP only. Designate the state of initial rocks. Must be a vector with length equal to the number of rocks (e.g. [1, 0, 0, 1])
  • suggester_belief=[1.0, 0.0]: RockSamplePOMDP only. Designate the initial belief over good rocks and bad rocks respectively. [1.0, 0.0] = perfect knowledge suggester, [0.75, 0.5] would represent a suggester with a bit more knowledge over good rocks but no additional information for the bad rocks.
  • init_pos=nothing: TagPOMDP only. Set the initial positions of the agent and opponent. The form is Vector{Tuple{Int, Int}}. E.g. [(1, 1), (5, 2)].
  • rng=Random.GLOBAL_RNG: Provide a random number generator

Generating Policies

The function to generate and save policies is in pol_generator.jl and the function to generate and save the action value function as a matrix is contained in generate_q.jl. Both of these files are included by the setup.jl script but can be included manually if needed.

To generate and save a policy, call generate_problem_and_policy with the problem of interest. Parameters can be passed to the SARSOP solver by keywords. For the RockSample(7, 8, 20, 0) results contained in the paper, a timeout value of 10800 was used.

Example Policy Generation

julia> generate_problem_and_policy(:rs78; timeout=300)
Generating a pomdpx file: model.pomdpx

Loading the model ...
  input file   : model.pomdpx
  loading time : 301.06s 

SARSOP initializing ...
  initialization time : 0.88s

-------------------------------------------------------------------------------
 Time   |#Trial |#Backup |LBound    |UBound    |Precision  |#Alphas |#Beliefs  
-------------------------------------------------------------------------------
 0.88    0       0        7.35092    28.5048    21.1539     13       1        
 0.95    2       50       7.35092    27.1536    19.8027     10       24       
 1.01    5       101      11.7638    25.7925    14.0287     22       38       
 1.1     7       150      12.3727    25.6247    13.2519     52       63       
 1.22    9       203      12.3727    25.5254    13.1526     78       84       
 
 ...
 
 ...
 
 263.85  389     9057     15.3982    22.4768    7.07857     2242     3236     
 267.16  391     9100     15.3982    22.4738    7.0756      2285     3250     
 269.68  393     9157     15.3982    22.4723    7.07412     2342     3269     
 272.37  395     9213     15.3982    22.4701    7.07186     2398     3287     
 275.73  397     9259     15.3982    22.4665    7.06831     2271     3305     
 277.82  399     9301     15.3982    22.4628    7.06459     2313     3318     
 281.28  401     9350     15.3982    22.4527    7.05447     2362     3336     
 284.72  403     9400     15.3982    22.4422    7.04402     2412     3356     
 286.41  405     9455     15.3982    22.4306    7.03245     2467     3376     
 289.55  407     9500     15.3982    22.4241    7.0259      2340     3391     
 293.48  410     9550     15.3982    22.4148    7.0166      2390     3406     
 297.99  413     9607     15.3982    22.4066    7.00837     2447     3424     
 301.29  415     9657     15.3982    22.4044    7.00621     2497     3441     
-------------------------------------------------------------------------------

SARSOP finishing ...
  Preset timeout reached
  Timeout     : 300.000000s
  Actual Time : 301.290000s

-------------------------------------------------------------------------------
 Time   |#Trial |#Backup |LBound    |UBound    |Precision  |#Alphas |#Beliefs  
-------------------------------------------------------------------------------
 301.51  415     9657     15.3982    22.4044    7.00621     2356     3441     
-------------------------------------------------------------------------------

Writing out policy ...
  output file : policy.out

Complete! Saved as: policies/rs_7-8-20-0_pol.jld2

Example Q Matrix Generation

generate_and_save_Q(:rs78)
Loading problem and policy...complete!
Calculating action value matrix 100%|████████████████████████████████████████| Time: 1:13:19 (23.60 ms/it)

After generating the policy and the Q matrix, you should have two more files saved in the policies folder (rs_7-8-20-0_pol.jld2 and rs_7-8-20-0_Q.jld2). Now you can run simulations with the :rs78 symbol as described in the Running Simulations section.

Citation

@inproceedings{Asmar2022},
title = {Collaborative Decision Making Using Action Suggestions},
author = {Dylan M. Asmar and Mykel J. Kochenderfer},
booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
year = {2022}

About

Code supporting the paper Collaborative Decision Making Using Action Suggestions.

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages