-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
write component to disk and add a plot of TT vs different components
- Loading branch information
Louis Thibaut
committed
Dec 11, 2024
1 parent
88b0346
commit deb67c1
Showing
2 changed files
with
179 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
173 changes: 173 additions & 0 deletions
173
project/data_analysis/python/paper_plots/results_multifrequency_components_TT.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
""" | ||
Plot the TT power spectra with their respective foreground components | ||
""" | ||
import matplotlib | ||
import sys | ||
|
||
import numpy as np | ||
import pylab as plt | ||
from pspipe_utils import best_fits, log, pspipe_list, beam_chromaticity, covariance | ||
from pspy import pspy_utils, so_dict, so_spectra | ||
from matplotlib import rcParams | ||
|
||
|
||
rcParams["font.family"] = "serif" | ||
rcParams["font.size"] = "12" | ||
rcParams["xtick.labelsize"] = 24 | ||
rcParams["ytick.labelsize"] = 24 | ||
rcParams["axes.labelsize"] = 20 | ||
rcParams["axes.titlesize"] = 12 | ||
|
||
|
||
d = so_dict.so_dict() | ||
d.read_from_file(sys.argv[1]) | ||
log = log.get_logger(**d) | ||
|
||
|
||
tag = d["best_fit_tag"] | ||
fg_components = d["fg_components"] | ||
binning_file = d["binning_file"] | ||
lmax = d["lmax"] | ||
spectra = ["TT", "TE", "TB", "ET", "BT", "EE", "EB", "BE", "BB"] | ||
|
||
bestfit_dir = f"best_fits{tag}" | ||
components_dir = f"{bestfit_dir}/components" | ||
cov_dir = "covariances" | ||
spec_dir = f"spectra_leak_corr_ab_corr_cal{tag}" | ||
result_dir = "plots/TT_components" | ||
|
||
pspy_utils.create_directory(result_dir) | ||
|
||
|
||
bin_lo, bin_hi, lb, bin_size = pspy_utils.read_binning_file(binning_file, lmax) | ||
|
||
|
||
|
||
spec_name_list = pspipe_list.get_spec_name_list(d, delimiter = "_") | ||
|
||
|
||
|
||
## Read the data and extract TT | ||
cov_xar = np.load(f"{cov_dir}/x_ar_final_cov_data.npy") | ||
vec_xar = covariance.read_x_ar_spectra_vec(spec_dir, | ||
spec_name_list, | ||
"cross", | ||
spectra_order = spectra, | ||
type="Dl") | ||
|
||
spectra_cuts = {"dr6_pa4_f220": dict(T=[975, lmax], P=[lmax, lmax]), | ||
"dr6_pa5_f150": dict(T=[775, lmax], P=[775, lmax]), | ||
"dr6_pa6_f150": dict(T=[575, lmax], P=[575, lmax]), | ||
"dr6_pa5_f090": dict(T=[975, lmax], P=[975, lmax]), | ||
"dr6_pa6_f090": dict(T=[975, lmax], P=[975, lmax])} | ||
|
||
bin_out_dict, indices = covariance.get_indices(bin_lo, | ||
bin_hi, | ||
lb, | ||
spec_name_list, | ||
spectra_cuts=spectra_cuts, | ||
spectra_order=spectra, | ||
selected_spectra=["TT"]) | ||
|
||
cov_TT = cov_xar[np.ix_(indices, indices)] | ||
vec_TT = vec_xar[indices] | ||
|
||
lb_dict, ps_TT, sigma_TT = {}, {}, {} | ||
for spec_select in bin_out_dict.keys(): | ||
my_spec = spec_select[0] | ||
my_id, lb_dict[my_spec] = bin_out_dict[spec_select] | ||
ps_TT[my_spec] = vec_TT[my_id] | ||
sigma_TT[my_spec] = np.sqrt(cov_TT[np.ix_(my_id, my_id)].diagonal()) | ||
|
||
# Done | ||
|
||
|
||
|
||
|
||
#### remove pa6 for clarity | ||
d["arrays_dr6"] = ["pa4_f220", "pa5_f090", "pa5_f150"] | ||
#spectra_list = pspipe_list.get_spec_name_list(d, delimiter = "_") | ||
|
||
narrays, _, _ = pspipe_list.get_arrays_list(d) | ||
|
||
l_th, ps_dict = so_spectra.read_ps(f"{bestfit_dir}/cmb.dat", spectra=spectra) | ||
|
||
|
||
fg_components["tt"].remove("tSZ_and_CIB") | ||
for comp in ["tSZ", "cibc", "tSZxCIB"]: | ||
fg_components["tt"].append(comp) | ||
|
||
|
||
|
||
spectra_list = ["dr6_pa5_f090xdr6_pa5_f090", "dr6_pa5_f090xdr6_pa5_f150", "dr6_pa4_f220xdr6_pa5_f090", "dr6_pa5_f150xdr6_pa5_f150", "dr6_pa4_f220xdr6_pa5_f150", "dr6_pa4_f220xdr6_pa4_f220"] | ||
|
||
comp_color = ["darkorange", "green", "red", "blue", "brown", "darkmagenta", "magenta"] | ||
fig, axes = plt.subplots(narrays, narrays, sharex=True, sharey=True, figsize=(24, 18)) | ||
axes = np.atleast_2d(axes) | ||
indices = np.triu_indices(narrays)[::-1] | ||
for i, cross in enumerate(spectra_list): | ||
name1, name2 = cross.split("x") | ||
idx = (indices[0][i], indices[1][i]) | ||
ax = axes[idx] | ||
|
||
if i == 0: | ||
ax.errorbar(lb_dict[cross], ps_TT[cross], sigma_TT[cross], fmt=".", label="data", markersize=12) | ||
else: | ||
ax.errorbar(lb_dict[cross], ps_TT[cross], sigma_TT[cross], fmt=".", markersize=12) | ||
|
||
l_th, fg_all = so_spectra.read_ps(f"{bestfit_dir}/fg_{cross}.dat", spectra=spectra) | ||
|
||
if i==0: | ||
ax.plot(l_th, ps_dict["TT"], color="gray", linestyle="--", label="CMB", linewidth=2) | ||
ax.plot(l_th, ps_dict["TT"] + fg_all["TT"], color="gray", label="CMB + fg", linewidth=2) | ||
else: | ||
ax.plot(l_th, ps_dict["TT"], color="gray", linestyle="--", linewidth=2) | ||
ax.plot(l_th, ps_dict["TT"] + fg_all["TT"], color="gray", linewidth=2) | ||
|
||
|
||
for comp, col in zip(fg_components["tt"], comp_color): | ||
l_th, fg_comp = np.loadtxt(f"{components_dir}/tt_{comp}_{cross}.dat", unpack=True) | ||
if comp == "tSZxCIB": | ||
fg_comp = np.abs(fg_comp) | ||
|
||
|
||
if i==0: | ||
if comp == "cibp": | ||
label = "CIB-Poisson" | ||
elif comp == "cibc": | ||
label = "CIB-Clustered" | ||
elif comp == "tSZxCIB": | ||
label = "|tSZxCIB|" | ||
else: | ||
label=comp | ||
|
||
ax.plot(l_th, fg_comp, label=label, linewidth=2, color=col) | ||
else: | ||
ax.plot(l_th, fg_comp, linewidth=2, color=col) | ||
|
||
|
||
title_ax = cross.replace("dr6_", "") | ||
title_ax = title_ax.replace("_", "-") | ||
if "pa4-f220" in title_ax: | ||
a, b = title_ax.split("x") | ||
title_ax = f"{b}x{a}" | ||
|
||
ax.set_title(title_ax, fontsize=30) | ||
ax.set_yscale("log") | ||
ax.set_ylim(1, 1e4) | ||
ax.set_xlim(200, 7800) | ||
|
||
|
||
for idx in zip(*np.triu_indices(narrays, k=1)): | ||
ax = axes[idx] | ||
fig.delaxes(ax) | ||
|
||
for i in range(narrays): | ||
axes[-1, i].set_xlabel(r"$\ell$", fontsize=35) | ||
axes[i, 0].set_ylabel(r"$D_\ell$", fontsize=35) | ||
fig.legend(bbox_to_anchor=(0.94,1), fontsize=30) | ||
plt.tight_layout() | ||
plt.savefig(f"{result_dir}/TT_per_components.png") | ||
plt.clf() | ||
plt.close() | ||
|