-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add script to plot residuals with respect to the best fit model
- Loading branch information
Louis Thibaut
committed
Dec 2, 2024
1 parent
1d05f34
commit 933c794
Showing
2 changed files
with
172 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
171 changes: 171 additions & 0 deletions
171
project/data_analysis/python/paper_plots/results_plot_residuals.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
""" | ||
This script plot the residuals with respect to the LCDM model specified in the dictionnary file | ||
""" | ||
|
||
from pspy import so_dict, so_spectra, pspy_utils | ||
from pspipe_utils import log, best_fits, external_data, covariance | ||
import numpy as np | ||
import pylab as plt | ||
import sys, os | ||
from matplotlib import rcParams | ||
import pspipe_utils | ||
import scipy.stats as ss | ||
|
||
rcParams["font.family"] = "serif" | ||
rcParams["font.size"] = "12" | ||
rcParams["xtick.labelsize"] = 12 | ||
rcParams["ytick.labelsize"] = 12 | ||
rcParams["axes.labelsize"] = 12 | ||
rcParams["axes.titlesize"] = 12 | ||
|
||
d = so_dict.so_dict() | ||
d.read_from_file(sys.argv[1]) | ||
log = log.get_logger(**d) | ||
|
||
tag = d["best_fit_tag"] | ||
binning_file = d["binning_file"] | ||
lmax = d["lmax"] | ||
|
||
combined_spec_dir = f"combined_spectra{tag}" | ||
bestfit_dir = f"best_fits{tag}" | ||
|
||
run_name = {} | ||
run_name["_paper"] = "ACT" | ||
run_name["_paper_PACT"] = "PACT" | ||
run_name["_Planck"] = "Planck" | ||
run_name["_Planck_LB"] = "Planck LB" | ||
|
||
plot_dir = f"plots/combined_spectra{tag}/" | ||
pspy_utils.create_directory(plot_dir) | ||
|
||
type = d["type"] | ||
|
||
planck_data_path = os.path.join(os.path.dirname(os.path.abspath(pspipe_utils.__file__)), "data/spectra/planck") | ||
|
||
######################################################################################## | ||
selected_spectra_list = [["TT"], ["EE"], ["TE", "ET"]] | ||
######################################################################################## | ||
|
||
ylim = {} | ||
ylim["TT"] = [10, 7000] | ||
ylim["TE"] = [-105000, 75000] | ||
ylim["EE"] = [0, 45] | ||
|
||
ylim_res = {} | ||
ylim_res["TT"] = [-120000, 120000] | ||
ylim_res["TE"] = [-15000, 15000] | ||
ylim_res["EE"] = [-4, 4] | ||
|
||
fac = {} | ||
fac["TT"] = 0 | ||
fac["TE"] = 1 | ||
fac["EE"] = 0 | ||
res_fac = {} | ||
res_fac["TT"] = 1 | ||
res_fac["TE"] = 1 | ||
res_fac["EE"] = 0 | ||
|
||
y_ticks_res = {} | ||
y_ticks_res["TT"] = [-100000, -50000, 0 , 50000, 100000] | ||
y_ticks_res["EE"] = [-3, -2, -1, 0, 1, 2, 3] | ||
y_ticks_res["TE"] = [-10000, -5000, 0, 5000, 10000] | ||
|
||
|
||
spectra = ["TT", "TE", "TB", "ET", "BT", "EE", "EB", "BE", "BB"] | ||
|
||
lth, Dlth = so_spectra.read_ps(f"{bestfit_dir}/cmb.dat", spectra=spectra) | ||
Dlb_th,Dlb_th_large = {}, {} | ||
for spectrum in spectra: | ||
lb_th, Dlb_th[spectrum] = pspy_utils.naive_binning(lth, Dlth[spectrum], binning_file, lmax) | ||
lb_th_large, Dlb_th_large[spectrum] = pspy_utils.naive_binning(lth, Dlth[spectrum], "../dr6/BIN_ACTPOL_50_4_SC_large_bin_at_low_ell", lmax) | ||
|
||
|
||
l_planck, ps_planck_b, sigma_planck, cov_planck = external_data.get_planck_cmb_only_data() | ||
l_b, ps_th_plank = external_data.bin_ala_planck_cmb_only(lth, Dlth) | ||
|
||
rebin_fac = 2 | ||
|
||
for spec_select in selected_spectra_list: | ||
s_name = spec_select[0] | ||
|
||
lb_ml, vec_ml, sigma_ml = np.loadtxt(f"{combined_spec_dir}/{type}_all_{s_name}_cmb_only.dat", unpack=True) | ||
cov_ml = np.load(f"{combined_spec_dir}/cov_all_{s_name}.npy") | ||
inv_cov_ml = np.linalg.inv(cov_ml) | ||
|
||
l_p = l_planck[s_name] | ||
f_p = l_p * (l_p + 1) / (2 * np.pi) | ||
Dl_p = ps_planck_b[s_name] * f_p | ||
sigma_p = sigma_planck[s_name] * f_p | ||
cov_p = cov_planck[s_name+s_name] * np.outer(f_p, f_p) | ||
Dl_p_th = ps_th_plank[s_name] * f_p | ||
|
||
l_p_rebin, Dl_p_rebin, cov_rebin = covariance.rebin_spectrum_with_cov(l_p, Dl_p, cov_p, rebin_fac=rebin_fac) | ||
_, Dl_p_th_rebin, _ = covariance.rebin_spectrum_with_cov(l_p, Dl_p_th, cov_p, rebin_fac=rebin_fac) | ||
|
||
|
||
id = np.where(lb_th >= lb_ml[0]) | ||
res = (vec_ml - Dlb_th[s_name][id]) | ||
chi2 = res @ inv_cov_ml @ res | ||
ndof = len(lb_ml) | ||
pte = 1 - ss.chi2(ndof).cdf(chi2) | ||
|
||
|
||
res_p = (Dl_p - Dl_p_th) | ||
chi_2_p = res_p @ np.linalg.inv(cov_p) @ res_p | ||
ndof_p = len(Dl_p) | ||
pte_p = 1 - ss.chi2(ndof_p).cdf(chi_2_p) | ||
|
||
res_p_rebin = (Dl_p_rebin - Dl_p_th_rebin) | ||
chi_2_p_rebin = res_p_rebin @ np.linalg.inv(cov_rebin) @ res_p_rebin | ||
ndof_p_rebin = len(Dl_p_rebin) | ||
pte_p_rebin = 1 - ss.chi2(ndof_p_rebin).cdf(chi_2_p_rebin) | ||
sigma_p_rebin = np.sqrt(cov_rebin.diagonal()) | ||
|
||
|
||
print(pte, pte_p, pte_p_rebin) | ||
|
||
plt.figure(figsize=(16, 8)) | ||
plt.subplot(2,1,1) | ||
if s_name == "TT": plt.semilogy() | ||
plt.ylim(ylim[s_name]) | ||
plt.errorbar(lb_ml, vec_ml * lb_ml ** fac[s_name], sigma_ml * lb_ml ** fac[s_name] , fmt=".", color="royalblue", label="ACT") | ||
plt.errorbar(l_p_rebin, Dl_p_rebin * l_p_rebin ** fac[s_name], sigma_p_rebin * l_p_rebin ** fac[s_name], fmt=".", color="darkorange", alpha=0.6, label="Planck") | ||
plt.plot(lth, Dlth[s_name] * lth ** fac[s_name], color="gray", alpha=1, label=r" %s $\Lambda$CDM" % run_name[tag]) | ||
|
||
if fac[s_name] == 0: | ||
plt.ylabel(r"$D^{%s}_{\ell}$" % s_name, fontsize=22) | ||
if fac[s_name] == 1: | ||
plt.ylabel(r"$\ell D^{%s}_{\ell}$" % s_name, fontsize=22) | ||
if fac[s_name] > 1: | ||
plt.ylabel(r"$\ell^{%s}D^{%s}_{\ell}$" % (fac[s_name], s_name), fontsize=22) | ||
|
||
plt.xlim(0,4000) | ||
plt.legend(fontsize=16) | ||
plt.xticks([]) | ||
|
||
plt.subplot(2,1,2) | ||
plt.xlabel(r"$\ell$", fontsize=22) | ||
|
||
if res_fac[s_name] == 0: | ||
plt.ylabel(r"$(D^{%s}_{\ell} - D^{%s, th}_{\ell, \rm %s}) $" % ( s_name, s_name, run_name[tag]), fontsize=22) | ||
if res_fac[s_name] == 1: | ||
plt.ylabel(r"$\ell (D^{%s}_{\ell} - D^{%s, th}_{\ell, \rm %s}) $" % (s_name, s_name, run_name[tag]), fontsize=22) | ||
if res_fac[s_name] > 1: | ||
plt.ylabel(r"$\ell^{%s} (D^{%s}_{\ell} - D^{%s, th}_{\ell, \rm %s}) $" % (res_fac[s_name], s_name, s_name, run_name[tag]), fontsize=22) | ||
|
||
|
||
plt.errorbar(lb_ml, res * lb_ml ** res_fac[s_name], sigma_ml * lb_ml ** res_fac[s_name], | ||
label=f"ACT (PTE: {pte:.3f})", fmt=".", color="royalblue") | ||
plt.errorbar(l_p_rebin, res_p_rebin * l_p_rebin ** res_fac[s_name], sigma_p_rebin * l_p_rebin ** res_fac[s_name], | ||
label=f"Planck (PTE: {pte_p_rebin:.3f})", alpha=0.6, fmt=".", color="darkorange") | ||
|
||
plt.plot(lb_th, lb_th * 0, color="gray") | ||
plt.xlim(0,4000) | ||
plt.ylim(ylim_res[s_name]) | ||
plt.yticks(ticks=y_ticks_res[s_name], labels=y_ticks_res[s_name]) | ||
plt.legend(fontsize=16) | ||
plt.subplots_adjust(wspace=0, hspace=0) | ||
plt.savefig(f"{plot_dir}/residal_vs_best_fit_cmb_{s_name}.png", bbox_inches="tight") | ||
plt.clf() | ||
plt.close() | ||
|