Skip to content

Bachelor Thesis 2019, Stock market prediction using deep LSTM networks (Vorhersage von Aktienkursen mittels tiefen LSTM-Netzwerken), Joel Erzinger und Silvio Jäger, NTB - University of Applied Sciences Buchs

Notifications You must be signed in to change notification settings

silviojaeger/ba_machine_learning_2019

Repository files navigation

Installation (Windows)

  • git clone https://github.com/silviojaeger/ba_machine_learning_2019
  • cd .\ba_machine_learning_2019
  • setup.ps1
  • Setup VSCode (Optional)
    • Open Folder ba_machine_learning_2019
    • Select Interpreter: command + shift + P execute Python: Select Interpreter select .\env\Scripts\python.exe
    • Activate env (Optional for terminal commands): .\activate.ps1

Upgrade environment

  • activate.ps1
  • update_requirements.ps1
  • python -m pip install <package>
  • Commit changes

Create a new environment

  • Copy following files to a new foder .<newEnv>:
    • setup.ps1
    • update_requirements.ps1
    • add .\<newEnv>\env to .gitignore

Install graphviz (used to visualize the keras graph)

Install CUDA library(used to train the models on your GPU)

About

Bachelor Thesis 2019, Stock market prediction using deep LSTM networks (Vorhersage von Aktienkursen mittels tiefen LSTM-Netzwerken), Joel Erzinger und Silvio Jäger, NTB - University of Applied Sciences Buchs

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages