git clone https://github.com/silviojaeger/ba_machine_learning_2019
cd .\ba_machine_learning_2019
setup.ps1
- Setup VSCode (Optional)
- Open Folder
ba_machine_learning_2019
- Select Interpreter:
command + shift + P
execute
Python: Select Interpreter
select.\env\Scripts\python.exe
- Activate env (Optional for terminal commands):
.\activate.ps1
- Open Folder
activate.ps1
update_requirements.ps1
python -m pip install <package>
- Commit changes
- Copy following files to a new foder .<newEnv>:
setup.ps1
update_requirements.ps1
- add
.\<newEnv>\env
to.gitignore
- Download and install the Windows package from here: https://graphviz.gitlab.io/_pages/Download/Download_windows.html
- Update your graphics-card driver: https://www.nvidia.de/Download/index.aspx?lang=de
- Install CUDA 10.0: https://developer.nvidia.com/cuda-10.0-download-archive
- Download cudnn and safe it in
C:\tools
(you have to create a free NVIDIA-account for this): https://developer.nvidia.com/cudnn - Add the following paths to the system %PATH%
*
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin
*C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\extras\CUPTI\libx64
*C:\tools\cuda\bin
- to make it run on a system with cpu's that does'nt support AVX (like the NTB remote-computer) you have to install tensorflow the following:
- Download this wheel file: https://drive.google.com/open?id=1dWlAqVqcCZmH3q3vefo8ohVhDxBTRp0H
- Make sure tensorflow is not installed (
pip uninstall tensorflow
) - Install the tensorflow wheele:
pip install /PATH-TO-MY-FILE/tensorflow-1.12.0-cp36-cp36m-win_amd64.whl
- More details: https://www.tensorflow.org/install/gpu