forked from pytorch/benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Summary: Pull Request resolved: pytorch#2486 Differential Revision: D61055780
- Loading branch information
1 parent
dde8528
commit 1945a8f
Showing
3 changed files
with
449 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .operator import Operator |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,328 @@ | ||
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. | ||
# | ||
# This source code is licensed under the BSD license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
import ast | ||
import copy | ||
import functools | ||
import linecache | ||
import os | ||
import sys | ||
import tempfile | ||
from typing import Any, Dict, List | ||
|
||
import torch | ||
|
||
import triton | ||
import triton.language as tl | ||
|
||
|
||
def get_cuda_autotune_config(): | ||
return [ | ||
triton.Config( | ||
{"BLOCK_M": 64, "BLOCK_N": 64, "BLOCK_K": 64}, num_stages=2, num_warps=2 | ||
), | ||
# triton.Config( | ||
# {"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 64}, num_stages=4, num_warps=4 | ||
# ), | ||
# triton.Config( | ||
# {"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 64}, num_stages=4, num_warps=4 | ||
# ), | ||
# triton.Config( | ||
# {"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 64}, num_stages=4, num_warps=4 | ||
# ), | ||
# triton.Config( | ||
# {"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 64}, num_stages=4, num_warps=4 | ||
# ), | ||
# triton.Config( | ||
# {"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 64}, num_stages=4, num_warps=4 | ||
# ), | ||
# triton.Config( | ||
# {"BLOCK_M": 64, "BLOCK_N": 64, "BLOCK_K": 64}, num_stages=5, num_warps=2 | ||
# ), | ||
# triton.Config( | ||
# {"BLOCK_M": 64, "BLOCK_N": 64, "BLOCK_K": 64}, num_stages=5, num_warps=2 | ||
# ), | ||
] | ||
|
||
|
||
def get_autotune_config(): | ||
return get_cuda_autotune_config() | ||
|
||
|
||
@triton.autotune( | ||
configs=get_autotune_config(), | ||
key=["M", "D", "H_D"], | ||
) | ||
@triton.jit | ||
def fused_ffn_kernel( | ||
X_ptr, | ||
W13_ptr, | ||
W2_ptr, | ||
Y_ptr, | ||
P_out_ptr, # Output for intermediate results | ||
M, | ||
D, | ||
H_D, # Note: P is not needed as a parameter since P == D | ||
stride_xm, | ||
stride_xd, | ||
stride_w13a, | ||
stride_w13b, | ||
stride_w2n, | ||
stride_w2d, # Changed from stride_w2p to stride_w2d | ||
stride_ym, | ||
stride_yd, # Changed from stride_yp to stride_yd | ||
stride_poutm, | ||
stride_poutn, | ||
BLOCK_M: tl.constexpr, | ||
BLOCK_N: tl.constexpr, | ||
BLOCK_K: tl.constexpr, # This will be used for both D and P dimensions | ||
BLOCK_K_D: tl.constexpr, # This will be used for D dimension only | ||
): | ||
# Program IDs for M dimension | ||
pid_m = tl.program_id(0) | ||
|
||
# Offsets for M | ||
offs_m = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) | ||
mask_m = offs_m < M | ||
|
||
# Initialize accumulator with float32 precision | ||
acc = tl.zeros((BLOCK_M, BLOCK_K_D), dtype=tl.float32) | ||
|
||
# Loop over H_D in BLOCK_N chunks | ||
for start_n in range(0, H_D, BLOCK_N): | ||
offs_n = start_n + tl.arange(0, BLOCK_N) | ||
mask_n = offs_n < H_D | ||
|
||
# Initialize partial results | ||
p1_block = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) | ||
p2_block = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) | ||
|
||
# Block pointers for W13 (for p1 and p2) | ||
w1t_bptr = tl.make_block_ptr( | ||
base=W13_ptr, | ||
shape=(D, H_D), | ||
strides=(stride_w13b, stride_w13a), | ||
offsets=(0, start_n), | ||
block_shape=(BLOCK_K, BLOCK_N), | ||
order=(1, 0), | ||
) | ||
w3t_bptr = tl.make_block_ptr( | ||
base=W13_ptr, | ||
shape=(D, H_D), | ||
strides=(stride_w13b, stride_w13a), | ||
offsets=(0, H_D + start_n), | ||
block_shape=(BLOCK_K, BLOCK_N), | ||
order=(1, 0), | ||
) | ||
|
||
# Loop over K (which is equal to D) in BLOCK_K chunks | ||
for k in range(0, D, BLOCK_K): | ||
offs_k = k + tl.arange(0, BLOCK_K) | ||
mask_k = offs_k < D | ||
|
||
# Load X block | ||
x_bptr = tl.make_block_ptr( | ||
base=X_ptr, | ||
shape=(M, D), | ||
strides=(stride_xm, stride_xd), | ||
offsets=(pid_m * BLOCK_M, k), | ||
block_shape=(BLOCK_M, BLOCK_K), | ||
order=(1, 0), | ||
) | ||
X_block = tl.load(x_bptr, boundary_check=(0, 1), padding_option="zero") | ||
# X_block = tl.where(mask_m[:, None] & mask_k[None, :], X_block, 0.0).to( | ||
# tl.float16 | ||
# ) | ||
|
||
# Load W1 and W3 blocks | ||
W1_block = tl.load(w1t_bptr) | ||
W3_block = tl.load(w3t_bptr) | ||
|
||
# Perform GEMM operations | ||
p1_block += tl.dot(X_block, W1_block) | ||
p2_block += tl.dot(X_block, W3_block) | ||
|
||
# Advance the block pointers | ||
w1t_bptr = tl.advance(w1t_bptr, (BLOCK_K, 0)) | ||
w3t_bptr = tl.advance(w3t_bptr, (BLOCK_K, 0)) | ||
|
||
# Apply SiLU activation to p1 and multiply with p2 | ||
p_out_block = p1_block * tl.sigmoid(p1_block) * p2_block | ||
# p_out_block = tl.where(mask_m[:, None] & mask_n[None, :], p_out_block, 0.0) | ||
|
||
# Store P_out | ||
P_out_offs = P_out_ptr + ( | ||
offs_m[:, None] * stride_poutm + offs_n[None, :] * stride_poutn | ||
) | ||
tl.store( | ||
P_out_offs, | ||
p_out_block.to(tl.float16), | ||
mask=mask_m[:, None] & mask_n[None, :], | ||
) | ||
|
||
w2_bptr = tl.make_block_ptr( | ||
base=W2_ptr, | ||
shape=(H_D, D), | ||
strides=(stride_w2n, stride_w2d), | ||
offsets=(start_n, 0), | ||
block_shape=(BLOCK_N, BLOCK_K_D), | ||
order=(0, 1), | ||
) | ||
W2_block = tl.load(w2_bptr, boundary_check=(0, 1), padding_option="zero") | ||
|
||
# Perform the second GEMM | ||
acc += tl.dot(p_out_block.to(tl.float16), W2_block) | ||
|
||
offs_d = tl.arange(0, BLOCK_K_D) | ||
mask_d = offs_d < D | ||
y_offs = Y_ptr + offs_m[:, None] * stride_ym + offs_d[None, :] * stride_yd | ||
tl.store(y_offs, acc.to(tl.float16), mask=mask_m[:, None] & mask_d[None, :]) | ||
|
||
|
||
def fused_ffn( | ||
x: torch.Tensor, w13: torch.Tensor, w2: torch.Tensor, has_p: bool = False | ||
): | ||
# x: [B_T, D] | ||
# w13: [H_D*2, D] | ||
# D = K | ||
# out1: [B_T, H_D] | ||
# w2: [H_D, P] | ||
# P = K | ||
# output: [B_T, P] | ||
B_T, D = x.shape | ||
H_D_2, D = w13.shape | ||
P, H_D = w2.shape | ||
assert D == P, f"D and P must be equal but got {D=} and {P=}" | ||
assert H_D_2 == 2 * H_D, f"H_D_2 must be 2 times of H_D but got {H_D_2=} and {H_D=}" | ||
|
||
def grid(META): | ||
return (triton.cdiv(B_T, META["BLOCK_M"]),) # triton.cdiv(P, META["BLOCK_P"])) | ||
|
||
output = torch.empty((B_T, P), dtype=x.dtype, device=x.device) | ||
if has_p: | ||
p_out = torch.empty((B_T, H_D), dtype=x.dtype, device=x.device) | ||
else: | ||
p_out = torch.empty(1, dtype=x.dtype, device=x.device) # Dummy tensor | ||
|
||
w2_t = w2.t().contiguous() | ||
|
||
BLOCK_K_D = D | ||
|
||
fused_ffn_kernel[grid]( | ||
x, | ||
w13, | ||
w2_t, | ||
output, | ||
p_out, | ||
B_T, | ||
D, | ||
H_D, | ||
x.stride(0), | ||
x.stride(1), | ||
w13.stride(0), | ||
w13.stride(1), | ||
w2_t.stride(0), | ||
w2_t.stride(1), | ||
output.stride(0), | ||
output.stride(1), | ||
p_out.stride(0) if has_p else 0, | ||
p_out.stride(1) if has_p else 0, | ||
BLOCK_K_D=BLOCK_K_D, | ||
) | ||
|
||
return output, p_out if has_p else None | ||
|
||
|
||
def eager_ffn(x, w13, w2): | ||
p = torch.matmul(x, w13.t()) | ||
H_D_2, D = w13.shape | ||
H_D = H_D_2 // 2 | ||
p1 = p[:, :H_D] # B_T, H_D | ||
p2 = p[:, H_D:] # B_T, H_D | ||
p_out = p1 * torch.sigmoid(p1) * p2 | ||
out = torch.matmul(p_out, w2.t()) | ||
return out, p_out | ||
|
||
|
||
def nunerics_check(shape): | ||
B_T, H_D, D = shape | ||
print(f"Running numeric check for {shape}") | ||
x = torch.randn((B_T, D), dtype=torch.float16, device="cuda") | ||
w13 = torch.randn((H_D * 2, D), dtype=torch.float16, device="cuda") * 0.1 | ||
w2 = torch.randn((D, H_D), dtype=torch.float16, device="cuda") * 0.1 | ||
triton_out, triton_p = fused_ffn(x, w13, w2, has_p=True) | ||
eager_out, eager_p = eager_ffn(x, w13, w2) | ||
|
||
if not torch.allclose(triton_p, eager_p, atol=1e-2, rtol=1e-2): | ||
print("P numeric check failed") | ||
print(f"triton output: {triton_p.flatten()[0:10]}") | ||
print(f"eager output: {eager_p.flatten()[0:10]}") | ||
else: | ||
print("P numeric check passed") | ||
if not torch.allclose(triton_out, eager_out, atol=1e-2, rtol=1e-2): | ||
print("Y numeric check failed") | ||
print(f"triton output: {triton_out.flatten()[0:10]}") | ||
print(f"eager output: {eager_out.flatten()[0:10]}") | ||
else: | ||
print("Y numeric check passed") | ||
|
||
torch.testing.assert_close(triton_out, eager_out, atol=1e-2, rtol=1e-2) | ||
|
||
|
||
def do_benchmark(): | ||
|
||
D = 2048 | ||
H_D = 8192 | ||
|
||
configs = [] | ||
configs.append( | ||
triton.testing.Benchmark( | ||
x_names=[ | ||
"B_T", | ||
"H_D", | ||
"D", | ||
], # Argument names to use as an x-axis for the plot | ||
x_vals=[ | ||
(i, H_D, D) | ||
for H_D, D in [(5325, 4096)] | ||
for i in [1024, 2048, 4096, 8192, 16384] | ||
], # Different possible values for `x_name` | ||
line_arg="provider", # Argument name whose value corresponds to a different line in the plot | ||
# Possible values for `line_arg` | ||
# Don't compare to cublas for fp8 cases as torch.matmul doesn't support fp8 at the moment. | ||
line_vals=["eager", "fused"], | ||
line_names=["Eager", "Fused"], | ||
styles=[("green", "-"), ("blue", "-")], | ||
ylabel="Latency(ms)", # Label name for the y-axis | ||
plot_name="fused_ffn-benchmark", | ||
args={}, | ||
) | ||
) | ||
|
||
@triton.testing.perf_report(configs) | ||
def benchmark(B_T, H_D, D, provider): | ||
# breakpoint() | ||
x = torch.randn((B_T, D), dtype=torch.float16, device="cuda") | ||
w13 = torch.randn((H_D * 2, D), dtype=torch.float16, device="cuda") | ||
w2 = torch.randn((D, H_D), dtype=torch.float16, device="cuda") | ||
quantiles = [0.5, 0.2, 0.8] | ||
if provider == "eager": | ||
return triton.testing.do_bench( | ||
lambda: eager_ffn(x, w13, w2), quantiles=quantiles | ||
) | ||
if provider == "fused": | ||
return triton.testing.do_bench( | ||
lambda: fused_ffn(x, w13, w2), quantiles=quantiles | ||
) | ||
|
||
benchmark.run(show_plots=True, print_data=True) | ||
|
||
|
||
if __name__ == "__main__": | ||
# B_T, H_D, D | ||
torch.manual_seed(0) | ||
nunerics_check((1024, 1024, 128)) | ||
|
||
# do_benchmark() |
Oops, something went wrong.