Skip to content

Commit

Permalink
optimize mpo construction
Browse files Browse the repository at this point in the history
  • Loading branch information
jjren committed Aug 24, 2024
1 parent b80d923 commit 1563e4c
Show file tree
Hide file tree
Showing 3 changed files with 40 additions and 61 deletions.
4 changes: 2 additions & 2 deletions renormalizer/mps/mpo.py
Original file line number Diff line number Diff line change
Expand Up @@ -271,12 +271,12 @@ def __init__(self, model: Model = None, terms: Union[Op, List[Op]] = None, offse
if len(terms) == 0:
raise ValueError("Terms all have factor 0.")

table, factor = _terms_to_table(model, terms, -self.offset)
table, primary_ops, factor = _terms_to_table(model, terms, -self.offset)

self.dtype = factor.dtype

self.symbolic_mpo, self.qn, self.qntot, self.qnidx, self.symbolic_out_ops_list, self.primary_ops \
= construct_symbolic_mpo(table, factor, algo=algo)
= construct_symbolic_mpo(table, primary_ops, factor, algo=algo)
# from renormalizer.mps.symbolic_mpo import _format_symbolic_mpo
# print(_format_symbolic_mpo(mpo_symbol))
self.model = model
Expand Down
92 changes: 36 additions & 56 deletions renormalizer/mps/symbolic_mpo.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
OpTuple = namedtuple("OpTuple", ["symbol", "qn", "factor"])


def construct_symbolic_mpo(table, factor, algo="Hopcroft-Karp"):
def construct_symbolic_mpo(table, primary_ops, factor, algo="Hopcroft-Karp"):
r"""
A General Compact (Symbolic) MPO Construction Routine
Expand Down Expand Up @@ -102,17 +102,18 @@ def construct_symbolic_mpo(table, factor, algo="Hopcroft-Karp"):
The local mpo is the transformation matrix between 0'',1'' to 0'''
"""

qn_size = len(table[0][0].qn)
qn_size = len(primary_ops[0].qn)

# Simplest case. Cut to the chase
if len(table) == 1:
if table.shape[0] == 1:
# The first layer: number of sites. The middle array: in and out virtual bond
# the 4th layer: operator sums
mpo: List[np.ndarray[List[Op]]] = []
mpoqn = [np.zeros((1, qn_size), dtype=int)]
primary_ops = list(set(table[0]))
op2idx = dict(zip(primary_ops, range(len(primary_ops))))
out_ops_list: List[List[OpTuple]] = [[OpTuple([0], qn=0, factor=1)]]
for op in table[0]:
for idx in table[0]:
op = primary_ops[idx]
mo = np.full((1, 1), None)
mo[0][0] = [op]
mpo.append(mo)
Expand All @@ -130,14 +131,10 @@ def construct_symbolic_mpo(table, factor, algo="Hopcroft-Karp"):
return mpo, mpoqn, qntot, qnidx, out_ops_list, primary_ops

logger.debug(f"symbolic mpo algorithm: {algo}")
logger.debug(f"Input operator terms: {len(table)}")

table, factor, primary_ops = _transform_table(table, factor)

# add the first and last column for convenience
ta = np.zeros((table.shape[0], 1), dtype=np.uint16)
table = np.concatenate((ta, table, ta), axis=1)
logger.debug(f"After combination of the same terms: {table.shape[0]}")

# 0 represents the identity symbol. Identity might not present
# in `primary_ops` but the algorithm still works.
Expand Down Expand Up @@ -364,22 +361,38 @@ def _terms_to_table(model: Model, terms: List[Op], const: float):

table = []
factor_list = []


primary_ops_eachsite = []
primary_ops = []

index = 0

dummy_table_entry = []
for b in model.basis:
if b.multi_dof:
dof = b.dof[0]
else:
dof = b.dof
op = Op.identity(dof, qn_size=model.qn_size)
dummy_table_entry.append(op)

primary_ops_eachsite.append({op:index})
primary_ops.append(op)
dummy_table_entry.append(index)
index += 1

for op in terms:
elem_ops, factor = op.split_elementary(model.dof_to_siteidx)
table_entry = dummy_table_entry.copy()

for elem_op in elem_ops:
# it is ensured in `elem_op` every symbol is on the same site
site_idx = model.dof_to_siteidx[elem_op.dofs[0]]
table_entry[site_idx] = elem_op
if elem_op not in primary_ops_eachsite[site_idx].keys():
primary_ops_eachsite[site_idx][elem_op] = index
primary_ops.append(elem_op)
index += 1
table_entry[site_idx] = primary_ops_eachsite[site_idx][elem_op]

table.append(table_entry)
factor_list.append(factor)

Expand All @@ -389,10 +402,19 @@ def _terms_to_table(model: Model, terms: List[Op], const: float):
factor_list.append(const)
table.append(table_entry)

factor_list = np.array(factor_list)
factor = np.array(factor_list)
logger.debug(f"# of operator terms: {len(table)}")

# use np.uint32, np.uint16 to save memory
max_uint16 = np.iinfo(np.uint16).max
assert len(primary_ops) < max_uint16

table = np.array(table, dtype=np.uint16)
logger.debug(f"Input operator terms: {table.shape[0]}")
table, factor = _deduplicate_table(table, factor)
logger.debug(f"After combination of the same terms: {table.shape[0]}")

return table, factor_list
return table, primary_ops, factor


def _deduplicate_table(table, factor):
Expand All @@ -416,48 +438,6 @@ def _deduplicate_table(table, factor):
return new_table, factor


def _transform_table(table, factor):
"""Transforms the table to integer table and combine duplicate terms."""

# use np.uint32, np.uint16 to save memory
max_uint16 = np.iinfo(np.uint16).max

# translate the symbolic operator table to an easy to manipulate numpy array
table = np.array(table)
# unique operators with DoF names taken into consideration
# The inclusion of DoF names is necessary for multi-dof basis.
unique_op = OrderedDict.fromkeys(table.ravel())
# Convert Set(table.ravel()) to List will change the Op order in list, OrderedDict made reproducible
unique_op = list(unique_op.keys())

# check the index of different operators could be represented with np.uint16
assert len(unique_op) < max_uint16

# Construct mapping from easy-to-manipulate integer to actual Op
primary_ops = list(unique_op)

op2idx = dict(zip(unique_op, range(len(unique_op))))
new_table = np.vectorize(op2idx.get)(table).astype(np.uint16)

del unique_op

if __debug__:
qn_size = len(table[0][0].qn)
qn_table = np.array([[x.qn for x in ta] for ta in table])
factor_table = np.array([[x.factor for x in ta] for ta in table])
for idx in range(len(primary_ops)):
coord = np.nonzero(new_table == idx)
# check that op with the same symbol has the same factor and qn
for j in range(qn_size):
assert np.unique(qn_table[:, :, j][coord]).size == 1
assert np.all(factor_table[coord] == factor_table[coord][0])

del factor_table, qn_table

table, factor = _deduplicate_table(new_table, factor)

return table, factor, primary_ops


# translate the numbers into symbolic Matrix Operator
def compose_symbolic_mo(in_ops, out_ops, primary_ops):
Expand Down
5 changes: 2 additions & 3 deletions renormalizer/tn/symbolic_ttno.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from renormalizer import Op, Model
from renormalizer.model.basis import BasisSet
from renormalizer.tn.treebase import BasisTree
from renormalizer.mps.symbolic_mpo import _terms_to_table, _transform_table, _construct_symbolic_mpo_one_site, OpTuple
from renormalizer.mps.symbolic_mpo import _terms_to_table, _construct_symbolic_mpo_one_site, OpTuple


logger = logging.getLogger(__name__)
Expand Down Expand Up @@ -57,8 +57,7 @@ def construct_symbolic_ttno(tn: BasisTree, terms: List[Op], const: float = 0, al
basis = list(chain(*[n.basis_sets for n in nodes]))
model = Model(basis, [])
qn_size = model.qn_size
table, factor = _terms_to_table(model, terms, const)
table, factor, primary_ops = _transform_table(table, factor)
table, primary_ops, factor = _terms_to_table(model, terms, const)

dummy_in_ops = [[OpTuple([0], qn=np.zeros(qn_size, dtype=int), factor=1)]]
out_ops: List[List[OpTuple]]
Expand Down

0 comments on commit 1563e4c

Please sign in to comment.