-
Notifications
You must be signed in to change notification settings - Fork 4
/
load_data.py
298 lines (247 loc) · 9.16 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import os
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for prediction."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file):
"""Reads a tab separated value file."""
data = []
with open(input_file, encoding="utf-8") as f:
for line in f:
line = line.strip().split("\t")
data.append(line)
return data
class ColaProcessor(DataProcessor):
"""Processor for the CoLA data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return [0, 1]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
label = 0
for (i, line) in enumerate(lines):
# Only the test set has a header
if set_type == "test" and i == 0:
continue
if len(line) != 2:
label = int(line[-3])
examples.append([line[-1], label])
return examples
class MnliProcessor(DataProcessor):
"""Processor for the MNLI data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
"dev")
def get_dev_mismatched_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")),
"dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test")
def get_test_mismatched_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
label = "contradiction"
all_labels = ["contradiction", "entailment", "neutral"]
for (i, line) in enumerate(lines):
if i == 0:
continue
if set_type == "train":
text1, text2, label = line[-4], line[-3], line[-1]
elif set_type == "dev":
text1, text2, label = line[-8], line[-7], line[-1]
else:
text1, text2 = line[-2], line[-1]
examples.append([text1, text2, all_labels.index(label)])
return examples
class QnliProcessor(DataProcessor):
"""Processor for the QNLI and RTE data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["not_entailment", "entailment"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
label = "entailment"
all_labels = ["not_entailment", "entailment"]
for (i, line) in enumerate(lines):
if i == 0:
continue
if set_type == "test":
_, text1, text2 = line
else:
_, text1, text2, label = line
examples.append([text1, text2, all_labels.index(label)])
return examples
class MrpcProcessor(DataProcessor):
"""Processor for the MRPC data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "msr_paraphrase_train.txt")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "msr_paraphrase_test.txt")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return [0, 1]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
label = 0
for (i, line) in enumerate(lines):
if i == 0:
continue
if set_type == "test":
text1, text2 = line[-2:]
else:
text1, text2, label = line[-2], line[-1], int(line[0])
examples.append([text1, text2, label])
return examples
class QqpProcessor(DataProcessor):
"""Processor for the QQP and WNLI data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return [0, 1]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
label = 0
for (i, line) in enumerate(lines):
if i == 0:
continue
if set_type == "test":
_, text1, text2 = line
else:
text1, text2, label = line[-3:]
examples.append([text1, text2, int(label)])
return examples
class Sst2Processor(DataProcessor):
"""Processor for the SST-2 data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return [0, 1]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
label = 0
for (i, line) in enumerate(lines):
if i == 0:
continue
if set_type == "test":
text1 = line[-1]
else:
text1, label = line
examples.append([text1, int(label)])
return examples
class StsbProcessor(DataProcessor):
"""Processor for the STS-B data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return 0.0
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
label = 0.
for (i, line) in enumerate(lines):
if i == 0:
continue
if set_type == "test":
text1, text2 = line[-2:]
else:
text1, text2, label = line[-3:]
examples.append([text1, text2, float(label)])
return examples