-
Notifications
You must be signed in to change notification settings - Fork 955
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add a script to compute the perplexity of test data #56
base: master
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
from __future__ import print_function | ||
import numpy as np | ||
import tensorflow as tf | ||
|
||
import argparse | ||
import codecs | ||
import time | ||
import os | ||
from six.moves import cPickle | ||
|
||
from utils import TextLoader | ||
from model import Model | ||
|
||
from six import text_type | ||
|
||
def main(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--save_dir', type=str, default='save', | ||
help='model directory to store checkpointed models') | ||
parser.add_argument('--text', type=str, | ||
help='filename of text to evaluate on') | ||
args = parser.parse_args() | ||
eval(args) | ||
|
||
def eval(args): | ||
with open(os.path.join(args.save_dir, 'config.pkl'), 'rb') as f: | ||
saved_args = cPickle.load(f) | ||
saved_args.batch_size = 1 | ||
saved_args.seq_length = 200 | ||
with open(os.path.join(args.save_dir, 'chars_vocab.pkl'), 'rb') as f: | ||
chars, vocab = cPickle.load(f) | ||
model = Model(saved_args, False) | ||
|
||
with codecs.open(args.text, 'r', encoding='utf-8') as f: | ||
text = f.read() | ||
|
||
with tf.Session() as sess: | ||
tf.initialize_all_variables().run() | ||
saver = tf.train.Saver(tf.all_variables()) | ||
ckpt = tf.train.get_checkpoint_state(args.save_dir) | ||
if ckpt and ckpt.model_checkpoint_path: | ||
saver.restore(sess, ckpt.model_checkpoint_path) | ||
ppl = model.eval(sess, chars, vocab, text) | ||
print('perplexity: {0}'.format(ppl)) | ||
|
||
if __name__ == '__main__': | ||
main() |
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -33,8 +33,8 @@ def __init__(self, args, infer=False): | |
softmax_b = tf.get_variable("softmax_b", [args.vocab_size]) | ||
with tf.device("/cpu:0"): | ||
embedding = tf.get_variable("embedding", [args.vocab_size, args.rnn_size]) | ||
inputs = tf.split(1, args.seq_length, tf.nn.embedding_lookup(embedding, self.input_data)) | ||
inputs = [tf.squeeze(input_, [1]) for input_ in inputs] | ||
input_embeddings = tf.nn.embedding_lookup(embedding, self.input_data) | ||
inputs = tf.unpack(input_embeddings, axis=1) | ||
|
||
def loop(prev, _): | ||
prev = tf.matmul(prev, softmax_w) + softmax_b | ||
|
@@ -45,11 +45,11 @@ def loop(prev, _): | |
output = tf.reshape(tf.concat(1, outputs), [-1, args.rnn_size]) | ||
self.logits = tf.matmul(output, softmax_w) + softmax_b | ||
self.probs = tf.nn.softmax(self.logits) | ||
loss = seq2seq.sequence_loss_by_example([self.logits], | ||
self.loss = seq2seq.sequence_loss_by_example([self.logits], | ||
[tf.reshape(self.targets, [-1])], | ||
[tf.ones([args.batch_size * args.seq_length])], | ||
args.vocab_size) | ||
self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length | ||
self.cost = tf.reduce_sum(self.loss) / args.batch_size / args.seq_length | ||
self.final_state = last_state | ||
self.lr = tf.Variable(0.0, trainable=False) | ||
tvars = tf.trainable_variables() | ||
|
@@ -58,6 +58,29 @@ def loop(prev, _): | |
optimizer = tf.train.AdamOptimizer(self.lr) | ||
self.train_op = optimizer.apply_gradients(zip(grads, tvars)) | ||
|
||
def eval(self, sess, chars, vocab, text): | ||
batch_size = 200 | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
|
||
state = sess.run(self.cell.zero_state(1, tf.float32)) | ||
x = [vocab[c] if c in vocab else vocab['UNK'] for c in text] | ||
x = [vocab['<S>']] + x + [vocab['</S>']] | ||
total_len = len(x) - 1 | ||
# pad x so the batch_size divides it | ||
while len(x) % 200 != 1: | ||
x.append(vocab[' ']) | ||
y = np.array(x[1:]).reshape((-1, batch_size)) | ||
x = np.array(x[:-1]).reshape((-1, batch_size)) | ||
|
||
total_loss = 0.0 | ||
for i in range(x.shape[0]): | ||
feed = {self.input_data: x[i:i+1, :], self.targets: y[i:i+1, :], | ||
self.initial_state: state} | ||
[state, loss] = sess.run([self.final_state, self.loss], feed) | ||
total_loss += loss.sum() | ||
# need to subtract off loss from padding tokens | ||
total_loss -= loss[total_len % batch_size - batch_size:].sum() | ||
avg_entropy = total_loss / len(text) | ||
return np.exp(avg_entropy) # this is the perplexity | ||
|
||
def sample(self, sess, chars, vocab, num=200, prime='The ', sampling_type=1): | ||
state = sess.run(self.cell.zero_state(1, tf.float32)) | ||
for char in prime[:-1]: | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
import tensorflow as tf | ||
from tensorflow.python.ops import rnn_cell | ||
from tensorflow.python.ops import seq2seq | ||
|
||
import numpy as np | ||
|
||
class Model(): | ||
def __init__(self, args, infer=False): | ||
self.args = args | ||
if infer: | ||
args.batch_size = 1 | ||
args.seq_length = 1 | ||
|
||
if args.model == 'rnn': | ||
cell_fn = rnn_cell.BasicRNNCell | ||
elif args.model == 'gru': | ||
cell_fn = rnn_cell.GRUCell | ||
elif args.model == 'lstm': | ||
cell_fn = rnn_cell.BasicLSTMCell | ||
else: | ||
raise Exception("model type not supported: {}".format(args.model)) | ||
|
||
cell = cell_fn(args.rnn_size, state_is_tuple=True) | ||
|
||
self.cell = cell = rnn_cell.MultiRNNCell([cell] * args.num_layers, state_is_tuple=True) | ||
|
||
self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length]) | ||
self.targets = tf.placeholder(tf.int32, [args.batch_size, args.seq_length]) | ||
self.initial_state = cell.zero_state(args.batch_size, tf.float32) | ||
|
||
with tf.variable_scope('rnnlm'): | ||
softmax_w = tf.get_variable("softmax_w", [args.rnn_size, args.vocab_size]) | ||
softmax_b = tf.get_variable("softmax_b", [args.vocab_size]) | ||
with tf.device("/cpu:0"): | ||
embedding = tf.get_variable("embedding", [args.vocab_size, args.rnn_size]) | ||
input_embeddings = tf.nn.embedding_lookup(embedding, self.input_data) | ||
inputs = tf.unpack(input_embeddings, axis=1) | ||
# inputs = tf.split(1, args.seq_length, tf.nn.embedding_lookup(embedding, self.input_data)) | ||
# inputs = [tf.squeeze(input_, [1]) for input_ in inputs] | ||
|
||
def loop(prev, _): | ||
prev = tf.matmul(prev, softmax_w) + softmax_b | ||
prev_symbol = tf.stop_gradient(tf.argmax(prev, 1)) | ||
return tf.nn.embedding_lookup(embedding, prev_symbol) | ||
|
||
outputs, last_state = seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop if infer else None, scope='rnnlm') | ||
output = tf.reshape(tf.concat(1, outputs), [-1, args.rnn_size]) | ||
self.logits = tf.matmul(output, softmax_w) + softmax_b | ||
self.probs = tf.nn.softmax(self.logits) | ||
self.loss = seq2seq.sequence_loss_by_example([self.logits], | ||
[tf.reshape(self.targets, [-1])], | ||
[tf.ones([args.batch_size * args.seq_length])], | ||
args.vocab_size) | ||
self.cost = tf.reduce_sum(self.loss) / args.batch_size / args.seq_length | ||
self.final_state = last_state | ||
self.lr = tf.Variable(0.0, trainable=False) | ||
tvars = tf.trainable_variables() | ||
grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars), | ||
args.grad_clip) | ||
optimizer = tf.train.AdamOptimizer(self.lr) | ||
self.train_op = optimizer.apply_gradients(zip(grads, tvars)) | ||
|
||
def eval(self, sess, chars, vocab, text): | ||
batch_size = 200 | ||
state = sess.run(self.cell.zero_state(1, tf.float32)) | ||
x = [vocab[c] if c in vocab else vocab['UNK'] for c in text] | ||
x = [vocab['<S>']] + x + [vocab['</S>']] | ||
total_len = len(x) - 1 | ||
# pad x so the batch_size divides it | ||
while len(x) % 200 != 1: | ||
x.append(vocab[' ']) | ||
y = np.array(x[1:]).reshape((-1, batch_size)) | ||
x = np.array(x[:-1]).reshape((-1, batch_size)) | ||
|
||
total_loss = 0.0 | ||
for i in range(x.shape[0]): | ||
feed = {self.input_data: x[i:i+1, :], self.targets: y[i:i+1, :], | ||
self.initial_state: state} | ||
[state, loss] = sess.run([self.final_state, self.loss], feed) | ||
total_loss += loss.sum() | ||
# need to subtract off loss from padding tokens | ||
total_loss -= loss[total_len % batch_size - batch_size:].sum() | ||
avg_entropy = total_loss / len(text) | ||
return np.exp(avg_entropy) # this is the perplexity | ||
|
||
def sample(self, sess, chars, vocab, num=200, prime='The ', sampling_type=1): | ||
state = sess.run(self.cell.zero_state(1, tf.float32)) | ||
for char in prime[:-1]: | ||
x = np.zeros((1, 1)) | ||
x[0, 0] = vocab[char] | ||
feed = {self.input_data: x, self.initial_state:state} | ||
[state] = sess.run([self.final_state], feed) | ||
|
||
def weighted_pick(weights): | ||
t = np.cumsum(weights) | ||
s = np.sum(weights) | ||
return(int(np.searchsorted(t, np.random.rand(1)*s))) | ||
|
||
ret = prime | ||
char = prime[-1] | ||
for n in range(num): | ||
x = np.zeros((1, 1)) | ||
x[0, 0] = vocab[char] | ||
feed = {self.input_data: x, self.initial_state:state} | ||
[probs, state] = sess.run([self.probs, self.final_state], feed) | ||
p = probs[0] | ||
|
||
if sampling_type == 0: | ||
sample = np.argmax(p) | ||
elif sampling_type == 2: | ||
if char == ' ': | ||
sample = weighted_pick(p) | ||
else: | ||
sample = np.argmax(p) | ||
else: # sampling_type == 1 default: | ||
sample = weighted_pick(p) | ||
|
||
pred = chars[sample] | ||
ret += pred | ||
char = pred | ||
return ret | ||
|
||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -4,6 +4,7 @@ | |
from six.moves import cPickle | ||
import numpy as np | ||
|
||
|
||
class TextLoader(): | ||
def __init__(self, data_dir, batch_size, seq_length, encoding='utf-8'): | ||
self.data_dir = data_dir | ||
|
@@ -28,13 +29,14 @@ def preprocess(self, input_file, vocab_file, tensor_file): | |
with codecs.open(input_file, "r", encoding=self.encoding) as f: | ||
data = f.read() | ||
counter = collections.Counter(data) | ||
counter.update(('<S>', '</S>', 'UNK')) # add tokens for start end and unk | ||
count_pairs = sorted(counter.items(), key=lambda x: -x[1]) | ||
self.chars, _ = zip(*count_pairs) | ||
self.vocab_size = len(self.chars) | ||
self.vocab = dict(zip(self.chars, range(len(self.chars)))) | ||
with open(vocab_file, 'wb') as f: | ||
cPickle.dump(self.chars, f) | ||
self.tensor = np.array(list(map(self.vocab.get, data))) | ||
self.tensor = np.array(list(map(self.vocab.get, ['<S>'] + list(data) + ['</S>']))) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Do you think it would be a better idea to write this after line 59, |
||
np.save(tensor_file, self.tensor) | ||
|
||
def load_preprocessed(self, vocab_file, tensor_file): | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It's probably better to move this to
eval.py