Skip to content

A bounded single-producer single-consumer wait-free and lock-free queue written in C++11

License

Notifications You must be signed in to change notification settings

shards-lang/SPSCQueue

 
 

Repository files navigation

SPSCQueue.h

Build Status License

A single producer single consumer wait-free and lock-free fixed size queue written in C++11.

Example

SPSCQueue<int> q(2);
auto t = std::thread([&] {
  while (!q.front());
  std::cout << *q.front() << std::endl;
  q.pop();
});
q.push(1);
t.join();

Usage

  • SPSCQueue<T>(size_t capacity);

    Create a SPSCqueue holding items of type T with capacity capacity. Capacity need to be greater than 2.

  • void emplace(Args &&... args);

    Enqueue an item using inplace construction. Blocks if queue is full.

  • bool try_emplace(Args &&... args);

    Try to enqueue an item using inplace construction. Returns true on success and false if queue is full.

  • void push(const T &v);

    Enqueue an item using copy construction. Blocks if queue is full.

  • template <typename P> void push(P &&v);

    Enqueue an item using move construction. Participates in overload resolution only if std::is_constructible<T, P&&>::value == true. Blocks if queue is full.

  • bool try_push(const T &v);

    Try to enqueue an item using copy construction. Returns true on success and false if queue is full.

  • template <typename P> void try_push(P &&v);

    Try to enqueue an item using move construction. Returns true on success and false if queue is full. Participates in overload resolution only if std::is_constructible<T, P&&>::value == true.

  • T *front();

    Return pointer to front of queue. Returns nullptr if queue is empty.

  • pop();

    Dequeue first elment of queue. Invalid to call if queue is empty. Requires std::is_nothrow_destructible<T>::value == true.

Only a single writer thread can perform enqueue operations and only a single reader thread can perform dequeue operations. Any other usage is invalid.

Implementation

Memory layout

The underlying implementation is a ring buffer.

Care has been taken to make sure to avoid any issues with false sharing. The head and tail pointers are aligned and padded to the false sharing range (currently hard coded to 128 bytes). The slots buffer is padded with the false sharing range at the beginning and end.

References:

Testing

Testing lock-free algorithms is hard. I'm using two approaches to test the implementation:

  • A single threaded test that the functionality works as intended, including that the element constructor and destructor is invoked correctly.
  • A multithreaded fuzz test that all elements are enqueued and dequeued correctly under heavy contention.

Benchmarks

Throughput benchmark measures throughput between 2 threads for a SPSCQueue<int> of size 256.

Latency benchmark measures round trip time between 2 threads communicating using 2 queues of type SPSCQueue<int>.

The following numbers are for a 2 socket machine with 2 x Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz.

NUMA Node / Core / Hyper-Thread Throughput (ops/ms) Latency RTT (ns)
#0,#0,#0 & #0,#0,#1 63942 60
#0,#0,#0 & #0,#1,#0 37739 238
#0,#0,#0 & #1,#0,#0 25744 768

Cited by

SPSCQueue have been cited by the following papers:

  • Peizhao Ou and Brian Demsky. 2018. Towards understanding the costs of avoiding out-of-thin-air results. Proc. ACM Program. Lang. 2, OOPSLA, Article 136 (October 2018), 29 pages. DOI: https://doi.org/10.1145/3276506

About

This project was created by Erik Rigtorp <[email protected]>.

About

A bounded single-producer single-consumer wait-free and lock-free queue written in C++11

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 94.3%
  • CMake 5.7%