Skip to content

Commit

Permalink
Update wfs.py in fd/td, util.py
Browse files Browse the repository at this point in the history
inner1d -> einsum
pep8 corr
  • Loading branch information
fs446 authored and hagenw committed Nov 27, 2020
1 parent bc0eb0f commit 47d69a8
Show file tree
Hide file tree
Showing 3 changed files with 30 additions and 30 deletions.
29 changes: 15 additions & 14 deletions sfs/fd/wfs.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,6 @@ def plot(d, selection, secondary_source):
"""
import numpy as _np
from numpy.core.umath_tests import inner1d as _inner1d
from scipy.special import hankel2 as _hankel2

from . import secondary_source_line as _secondary_source_line
Expand Down Expand Up @@ -91,7 +90,7 @@ def line_2d(omega, x0, n0, xs, *, c=None):
k = _util.wavenumber(omega, c)
ds = x0 - xs
r = _np.linalg.norm(ds, axis=1)
d = -1j/2 * k * _inner1d(ds, n0) / r * _hankel2(1, k * r)
d = -1j / 2 * k * _np.einsum('ij,ij->i', ds, n0) / r * _hankel2(1, k * r)
selection = _util.source_selection_line(n0, x0, xs)
return d, selection, _secondary_source_line(omega, c)

Expand Down Expand Up @@ -147,7 +146,8 @@ def _point(omega, x0, n0, xs, *, c=None):
k = _util.wavenumber(omega, c)
ds = x0 - xs
r = _np.linalg.norm(ds, axis=1)
d = 1j * k * _inner1d(ds, n0) / r ** (3 / 2) * _np.exp(-1j * k * r)
d = 1j * k * _np.einsum('ij,ij->i', ds, n0) / r ** (3 / 2) * _np.exp(
-1j * k * r)
selection = _util.source_selection_point(n0, x0, xs)
return d, selection, _secondary_source_point(omega, c)

Expand Down Expand Up @@ -235,7 +235,7 @@ def point_25d(omega, x0, n0, xs, xref=[0, 0, 0], c=None, omalias=None):
preeq_25d(omega, omalias, c) *
_np.sqrt(8 * _np.pi) *
_np.sqrt((r * s) / (r + s)) *
_inner1d(n0, ds) / s *
_np.einsum('ij,ij->i', ds, n0) / s *
_np.exp(-1j * k * s) / (4 * _np.pi * s))
selection = _util.source_selection_point(n0, x0, xs)
return d, selection, _secondary_source_point(omega, c)
Expand Down Expand Up @@ -317,7 +317,7 @@ def point_25d_legacy(omega, x0, n0, xs, xref=[0, 0, 0], c=None, omalias=None):
r = _np.linalg.norm(ds, axis=1)
d = (
preeq_25d(omega, omalias, c) *
_np.sqrt(_np.linalg.norm(xref - x0)) * _inner1d(ds, n0) /
_np.sqrt(_np.linalg.norm(xref - x0)) * _np.einsum('ij,ij->i', ds, n0) /
r ** (3 / 2) * _np.exp(-1j * k * r))
selection = _util.source_selection_point(n0, x0, xs)
return d, selection, _secondary_source_point(omega, c)
Expand Down Expand Up @@ -500,7 +500,8 @@ def _focused(omega, x0, n0, xs, ns, *, c=None):
k = _util.wavenumber(omega, c)
ds = x0 - xs
r = _np.linalg.norm(ds, axis=1)
d = 1j * k * _inner1d(ds, n0) / r ** (3 / 2) * _np.exp(1j * k * r)
d = 1j * k * _np.einsum('ij,ij->i', ds, n0) / r ** (3 / 2) * _np.exp(
1j * k * r)
selection = _util.source_selection_focused(ns, x0, xs)
return d, selection, _secondary_source_point(omega, c)

Expand Down Expand Up @@ -570,7 +571,7 @@ def focused_25d(omega, x0, n0, xs, ns, *, xref=[0, 0, 0], c=None,
r = _np.linalg.norm(ds, axis=1)
d = (
preeq_25d(omega, omalias, c) *
_np.sqrt(_np.linalg.norm(xref - x0)) * _inner1d(ds, n0) /
_np.sqrt(_np.linalg.norm(xref - x0)) * _np.einsum('ij,ij->i', ds, n0) /
r ** (3 / 2) * _np.exp(1j * k * r))
selection = _util.source_selection_focused(ns, x0, xs)
return d, selection, _secondary_source_point(omega, c)
Expand Down Expand Up @@ -683,22 +684,22 @@ def soundfigure_3d(omega, x0, n0, figure, npw=[0, 0, 1], *, c=None):
figure = _np.fft.fftshift(figure, axes=(0, 1)) # sign of spatial DFT
figure = _np.fft.fft2(figure)
# wavenumbers
kx = _np.fft.fftfreq(nx, 1./nx)
ky = _np.fft.fftfreq(ny, 1./ny)
kx = _np.fft.fftfreq(nx, 1. / nx)
ky = _np.fft.fftfreq(ny, 1. / ny)
# shift spectrum due to desired plane wave
figure = _np.roll(figure, int(k*npw[0]), axis=0)
figure = _np.roll(figure, int(k*npw[1]), axis=1)
figure = _np.roll(figure, int(k * npw[0]), axis=0)
figure = _np.roll(figure, int(k * npw[1]), axis=1)
# search and iterate over propagating plane wave components
kxx, kyy = _np.meshgrid(kx, ky, sparse=True)
rho = _np.sqrt((kxx) ** 2 + (kyy) ** 2)
d = 0
for n in range(nx):
for m in range(ny):
if(rho[n, m] < k):
if (rho[n, m] < k):
# dispertion relation
kz = _np.sqrt(k**2 - rho[n, m]**2)
kz = _np.sqrt(k ** 2 - rho[n, m] ** 2)
# normal vector of plane wave
npw = 1/k * _np.asarray([kx[n], ky[m], kz])
npw = 1 / k * _np.asarray([kx[n], ky[m], kz])
npw = npw / _np.linalg.norm(npw)
# driving function of plane wave with positive kz
d_component, selection, secondary_source = plane_3d(
Expand Down
13 changes: 6 additions & 7 deletions sfs/td/wfs.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,6 @@ def plot(d, selection, secondary_source, t=0):
"""
import numpy as _np
from numpy.core.umath_tests import inner1d as _inner1d

from . import apply_delays as _apply_delays
from . import secondary_source_point as _secondary_source_point
Expand Down Expand Up @@ -118,8 +117,8 @@ def plane_25d(x0, n0, n=[0, 1, 0], xref=[0, 0, 0], c=None):
n = _util.normalize_vector(n)
xref = _util.asarray_1d(xref)
g0 = _np.sqrt(2 * _np.pi * _np.linalg.norm(xref - x0, axis=1))
delays = _inner1d(n, x0) / c
weights = 2 * g0 * _inner1d(n, n0)
delays = _np.einsum('i,ji->j', n, x0) / c
weights = 2 * g0 * _np.einsum('i,ji->j', n, n0)
selection = _util.source_selection_plane(n0, n)
return delays, weights, selection, _secondary_source_point(c)

Expand Down Expand Up @@ -195,8 +194,8 @@ def point_25d(x0, n0, xs, xref=[0, 0, 0], c=None):
g0 = _np.sqrt(2 * _np.pi * _np.linalg.norm(xref - x0, axis=1))
ds = x0 - xs
r = _np.linalg.norm(ds, axis=1)
delays = r/c
weights = g0 * _inner1d(ds, n0) / (2 * _np.pi * r**(3/2))
delays = r / c
weights = g0 * _np.einsum('ij,ij->i', ds, n0) / (2 * _np.pi * r ** (3 / 2))
selection = _util.source_selection_point(n0, x0, xs)
return delays, weights, selection, _secondary_source_point(c)

Expand Down Expand Up @@ -278,8 +277,8 @@ def focused_25d(x0, n0, xs, ns, xref=[0, 0, 0], c=None):
r = _np.linalg.norm(ds, axis=1)
g0 = _np.sqrt(_np.linalg.norm(xref - x0, axis=1)
/ (_np.linalg.norm(xref - x0, axis=1) + r))
delays = -r/c
weights = g0 * _inner1d(ds, n0) / (2 * _np.pi * r**(3/2))
delays = -r / c
weights = g0 * _np.einsum('ij,ij->i', ds, n0) / (2 * _np.pi * r ** (3 / 2))
selection = _util.source_selection_focused(ns, x0, xs)
return delays, weights, selection, _secondary_source_point(c)

Expand Down
18 changes: 9 additions & 9 deletions sfs/util.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@

import collections
import numpy as np
from numpy.core.umath_tests import inner1d
from scipy.special import spherical_jn, spherical_yn
from . import default

Expand Down Expand Up @@ -41,7 +40,7 @@ def rotation_matrix(n1, n2):
vx = [[0, -v2, v1],
[v2, 0, -v0],
[-v1, v0, 0]] # skew-symmetric cross-product matrix
return I + vx + np.dot(vx, vx) * (1 - c) / s**2
return I + vx + np.dot(vx, vx) * (1 - c) / s ** 2


def wavenumber(omega, c=None):
Expand All @@ -51,7 +50,7 @@ def wavenumber(omega, c=None):
return omega / c


def direction_vector(alpha, beta=np.pi/2):
def direction_vector(alpha, beta=np.pi / 2):
"""Compute normal vector from azimuth, colatitude."""
return sph2cart(alpha, beta, 1)

Expand Down Expand Up @@ -122,7 +121,7 @@ def cart2sph(x, y, z):
Radius
"""
r = np.sqrt(x**2 + y**2 + z**2)
r = np.sqrt(x ** 2 + y ** 2 + z ** 2)
alpha = np.arctan2(y, x)
beta = np.arccos(z / r)
return alpha, beta, r
Expand Down Expand Up @@ -503,19 +502,20 @@ def image_sources_for_box(x, L, N, *, prune=True):
number of reflections at individual walls for each source.
"""

def _images_1d_unit_box(x, N):
result = np.arange(-N, N + 1, dtype=x.dtype)
result[N % 2::2] += x
result[1 - (N % 2)::2] += 1 - x
return result

def _count_walls_1d(a):
b = np.floor(a/2)
c = np.ceil((a-1)/2)
b = np.floor(a / 2)
c = np.ceil((a - 1) / 2)
return np.abs(np.stack([b, c], axis=1)).astype(int)

L = asarray_1d(L)
x = asarray_1d(x)/L
x = asarray_1d(x) / L
D = len(x)
xs = [_images_1d_unit_box(coord, N) for coord in x]
xs = np.reshape(np.transpose(np.meshgrid(*xs, indexing='ij')), (-1, D))
Expand Down Expand Up @@ -576,7 +576,7 @@ def source_selection_point(n0, x0, xs):
x0 = asarray_of_rows(x0)
xs = asarray_1d(xs)
ds = x0 - xs
return inner1d(ds, n0) >= default.selection_tolerance
return np.einsum('ij,ij->i', ds, n0) >= default.selection_tolerance


def source_selection_line(n0, x0, xs):
Expand All @@ -598,7 +598,7 @@ def source_selection_focused(ns, x0, xs):
xs = asarray_1d(xs)
ns = normalize_vector(ns)
ds = xs - x0
return inner1d(ns, ds) >= default.selection_tolerance
return np.einsum('i,ji->j', ns, ds) >= default.selection_tolerance


def source_selection_all(N):
Expand Down

0 comments on commit 47d69a8

Please sign in to comment.