It's python client of Redis-ML. It basically provide a basis for real-time machine learning apps.
Primary Algorithms of Client:
- Linear Regression
- Logistic Regression
- Matrix Operations
- redis and redis-ml module
- numpy
Coefficients' keys and values are stored.
from redisml import LinearRegression
r = redis.StrictRedis(host='localhost', port=6379)
model = LinearRegression('cars', r)
# Model Coefficients
coefficients = {
"intercept": -22.657,
"speed": 4.316
}
# Inputs to predict
inputs = {
"speed": 10
}
model.set(**coefficients)
dist = model.predict(**inputs)
print(dist)
# 20.502999999999997
Default cut-off point is 0.5. Coefficients' keys and values are stored.
from redisml import LogisticRegression
r = redis.StrictRedis(host='localhost', port=6379)
model = LogisticRegression('titanic', r)
# Model Coefficients
coefficients = {
"intercept": 5.137627,
"Pclass": -1.087156,
"Sexmale": -2.756819,
"Age": -0.037267,
"SibSp": -0.292920
}
# Inputs to predict
inputs = {
"Pclass": 1,
"Sexmale": 0,
"Age": 24,
"SibSp": 3
}
model.set(**coefficients)
survived_or_not = model.predict(**inputs)
print(survived_or_not)
#0
First, let's create a matrix
from redisml import Matrix
import numpy
r = redis.StrictRedis(host='localhost', port=6379)
matrix_1 = numpy.array(((1.23, 212.123, 3,), (4.10, 5, 6), (7, 8, 9)))
a = Matrix('a', r)
a.set(matrix_1)
print(a.get())
# [[ 1.23 212.123 3. ]
# [ 4.1 5. 6. ]
# [ 7. 8. 9. ]]
then let's create another matrix and perform the operations
matrix_2 = numpy.array(((9, 8, 7), (6, 5, 4), (3, 2, 1)))
b = Matrix('b', r)
b.set(matrix_2)
Adds two matrices
c = Matrix('c', r)
c.add(a, b) # adds two matrices
print(c.get())
# [[ 10.23 220.123 10. ]
# [ 10.1 10. 10. ]
# [ 10. 10. 10. ]]
Multilplies two matrices
d = Matrix('d', r)
d.multiply(b, c) # Multiplies the matrices
print(d.get())
# [[ 242.87 2131.107 240. ]
# [ 151.88 1410.738 150. ]
# [ 60.89 690.369 60. ]]
Scale matrix with scalar
scalar = 3.14
d.scale(scalar)
print(d.get())
# [[ 762.6118 6691.67598 753.6 ]
# [ 476.9032 4429.71732 471. ]
# [ 191.1946 2167.75866 188.4 ]]
- K-Means Implementation
- RandomForest Implementation