Skip to content

PCA via eigen-decomposition of the covariance/correlation matrix

License

Notifications You must be signed in to change notification settings

sercandogan/eigpca

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

eigpca

PCA via eigen-decomposition of the covariance/correlation matrix.

Install

pip install eigpca

Example

from eigpca import PCA
from sklearn.datasets import load_iris

X = load_iris().data
pca = PCA()

pca.fit(X)
pca.transform(X, n_components=2)

Scree Plot

pca.plot(y="eig")

Scree plot

Y axes is proportion of variance

pca.plot(y="pov")

Scree plot proportion of variance

About

PCA via eigen-decomposition of the covariance/correlation matrix

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages