Skip to content

Commit

Permalink
lib/monads: remove more uses of _tac methods
Browse files Browse the repository at this point in the history
Signed-off-by: Corey Lewis <[email protected]>
  • Loading branch information
corlewis committed Oct 13, 2023
1 parent 5632323 commit f652ab3
Show file tree
Hide file tree
Showing 11 changed files with 71 additions and 89 deletions.
6 changes: 3 additions & 3 deletions lib/Monads/reader_option/Reader_Option_VCG.thy
Original file line number Diff line number Diff line change
Expand Up @@ -116,8 +116,8 @@ lemma owhile_ovalid[wp]:
\<Longrightarrow> ovalid (I a) (owhile_inv C B a I M) Q"
unfolding owhile_inv_def owhile_def ovalid_def
apply clarify
apply (frule_tac I = "\<lambda>a. I a s" in option_while_rule)
apply auto
apply (frule (1) option_while_rule[where I = "\<lambda>a. I a s" for s])
apply auto
done

definition ovalid_property where "ovalid_property P x = (\<lambda>s f. (\<forall>r. Some r = x s f \<longrightarrow> P r s))"
Expand Down Expand Up @@ -187,7 +187,7 @@ lemma owhile_NF[wp]:
\<Longrightarrow> ovalidNF (I a) (owhile_inv C B a I M) Q"
unfolding owhile_inv_def ovalidNF_def ovalid_def
apply clarify
apply (rule_tac I = I and M = "measure (\<lambda>r. M r s)" in owhile_rule)
apply (rule owhile_rule[where I = I and M = "measure (\<lambda>r. M r s)" and s = s for s])
apply fastforce
apply fastforce
apply fastforce
Expand Down
6 changes: 2 additions & 4 deletions lib/Monads/trace/Trace_Det.thy
Original file line number Diff line number Diff line change
Expand Up @@ -55,10 +55,8 @@ lemma det_UN:
lemma bind_detI[simp, intro!]:
"\<lbrakk> det f; \<forall>x. det (g x) \<rbrakk> \<Longrightarrow> det (f >>= g)"
unfolding bind_def det_def
apply clarsimp
apply (erule_tac x=s in allE)
apply clarsimp
done
apply (erule all_reg[rotated])
by clarsimp

lemma det_modify[iff]:
"det (modify f)"
Expand Down
8 changes: 2 additions & 6 deletions lib/Monads/trace/Trace_Empty_Fail.thy
Original file line number Diff line number Diff line change
Expand Up @@ -58,8 +58,7 @@ lemma empty_failD3:
lemma empty_fail_bindD1:
"empty_fail (a >>= b) \<Longrightarrow> empty_fail a"
unfolding empty_fail_def bind_def
apply clarsimp
apply (drule_tac x=s in spec)
apply (erule all_reg[rotated])
by (force simp: split_def mres_def vimage_def split: tmres.splits)


Expand Down Expand Up @@ -112,10 +111,7 @@ lemma empty_fail_select[empty_fail_cond]:
lemma mres_bind_empty:
"mres ((f >>= g) s) = {}
\<Longrightarrow> mres (f s) = {} \<or> (\<forall>res\<in>mres (f s). mres (g (fst res) (snd res)) = {})"
apply clarsimp
apply (clarsimp simp: mres_def split_def vimage_def bind_def)
apply (rename_tac rv s' trace)
apply (drule_tac x=rv in spec, drule_tac x=s' in spec)
apply (clarsimp simp: bind_def mres_def split_def)
apply (clarsimp simp: image_def)
apply fastforce
done
Expand Down
4 changes: 2 additions & 2 deletions lib/Monads/trace/Trace_Lemmas.thy
Original file line number Diff line number Diff line change
Expand Up @@ -204,8 +204,8 @@ lemma liftE_liftM:
lemma liftME_liftM:
"liftME f = liftM (case_sum Inl (Inr \<circ> f))"
unfolding liftME_def liftM_def bindE_def returnOk_def lift_def
apply (rule ext, rename_tac x)
apply (rule_tac f="bind x" in arg_cong)
apply (rule ext)
apply (rule arg_cong[where f="bind m" for m])
apply (fastforce simp: throwError_def split: sum.splits)
done

Expand Down
1 change: 1 addition & 0 deletions lib/Monads/trace/Trace_Monad.thy
Original file line number Diff line number Diff line change
Expand Up @@ -806,6 +806,7 @@ lemma parallel_def2:
apply (rule exI, rule conjI, assumption)+
apply (simp add: list_all2_conv_all_nth list_eq_iff_nth_eq split_def prod_eq_iff)
apply clarsimp
apply (rename_tac ys zs)
apply (rule_tac x="map (((\<noteq>) Env) o fst) ys" in exI)
apply (simp add: zip_map1 o_def split_def)
apply (strengthen subst[where P="\<lambda>xs. (xs, v) \<in> S" for v S, mk_strg I _ E])
Expand Down
27 changes: 7 additions & 20 deletions lib/Monads/trace/Trace_Monad_Equations.thy
Original file line number Diff line number Diff line change
Expand Up @@ -117,35 +117,22 @@ lemma gets_the_returns:
by (simp_all add: returnOk_def throwError_def
gets_the_return)

lemma all_rv_choice_fn_eq_pred:
"\<lbrakk> \<And>rv. P rv \<Longrightarrow> \<exists>fn. f rv = g fn \<rbrakk> \<Longrightarrow> \<exists>fn. \<forall>rv. P rv \<longrightarrow> f rv = g (fn rv)"
apply (rule_tac x="\<lambda>rv. SOME h. f rv = g h" in exI)
apply (clarsimp split: if_split)
by (meson someI_ex)

lemma all_rv_choice_fn_eq:
"\<lbrakk> \<And>rv. \<exists>fn. f rv = g fn \<rbrakk>
\<Longrightarrow> \<exists>fn. f = (\<lambda>rv. g (fn rv))"
using all_rv_choice_fn_eq_pred[where f=f and g=g and P=\<top>]
by (simp add: fun_eq_iff)

lemma gets_the_eq_bind:
"\<lbrakk> \<exists>fn. f = gets_the (fn o fn'); \<And>rv. \<exists>fn. g rv = gets_the (fn o fn') \<rbrakk>
"\<lbrakk> f = gets_the (fn_f o fn'); \<And>rv. g rv = gets_the (fn_g rv o fn') \<rbrakk>
\<Longrightarrow> \<exists>fn. (f >>= g) = gets_the (fn o fn')"
apply (clarsimp dest!: all_rv_choice_fn_eq)
apply (rule_tac x="\<lambda>s. case (fn s) of None \<Rightarrow> None | Some v \<Rightarrow> fna v s" in exI)
apply clarsimp
apply (rule exI[where x="\<lambda>s. case (fn_f s) of None \<Rightarrow> None | Some v \<Rightarrow> fn_g v s"])
apply (simp add: gets_the_def bind_assoc exec_gets
assert_opt_def fun_eq_iff
split: option.split)
done

lemma gets_the_eq_bindE:
"\<lbrakk> \<exists>fn. f = gets_the (fn o fn'); \<And>rv. \<exists>fn. g rv = gets_the (fn o fn') \<rbrakk>
"\<lbrakk> f = gets_the (fn_f o fn'); \<And>rv. g rv = gets_the (fn_g rv o fn') \<rbrakk>
\<Longrightarrow> \<exists>fn. (f >>=E g) = gets_the (fn o fn')"
apply (simp add: bindE_def)
apply (erule gets_the_eq_bind)
unfolding bindE_def
apply (erule gets_the_eq_bind[where fn_g="\<lambda>rv s. case rv of Inl e \<Rightarrow> Some (Inl e) | Inr v \<Rightarrow> fn_g v s"])
apply (simp add: lift_def gets_the_returns split: sum.split)
apply fastforce
done

lemma gets_the_fail:
Expand Down Expand Up @@ -531,7 +518,7 @@ lemma put_trace_mapM_x:

lemma rev_surj:
"surj rev"
by (rule_tac f=rev in surjI, simp)
by (rule surjI[where f=rev], simp)

lemma select_image:
"select (f ` S) = do x \<leftarrow> select S; return (f x) od"
Expand Down
80 changes: 36 additions & 44 deletions lib/Monads/trace/Trace_More_VCG.thy
Original file line number Diff line number Diff line change
Expand Up @@ -137,8 +137,8 @@ lemma hoare_split_bind_case_sum:
"\<And>rv. \<lbrace>S rv\<rbrace> h rv \<lbrace>Q\<rbrace>"
assumes y: "\<lbrace>P\<rbrace> f \<lbrace>S\<rbrace>,\<lbrace>R\<rbrace>"
shows "\<lbrace>P\<rbrace> f >>= case_sum g h \<lbrace>Q\<rbrace>"
apply (rule hoare_seq_ext [OF _ y[unfolded validE_def]])
apply (case_tac x, simp_all add: x)
apply (rule hoare_seq_ext[OF _ y[unfolded validE_def]])
apply (wpsimp wp: x split: sum.splits)
done

lemma hoare_split_bind_case_sumE:
Expand All @@ -147,8 +147,8 @@ lemma hoare_split_bind_case_sumE:
assumes y: "\<lbrace>P\<rbrace> f \<lbrace>S\<rbrace>,\<lbrace>R\<rbrace>"
shows "\<lbrace>P\<rbrace> f >>= case_sum g h \<lbrace>Q\<rbrace>,\<lbrace>E\<rbrace>"
apply (unfold validE_def)
apply (rule hoare_seq_ext [OF _ y[unfolded validE_def]])
apply (case_tac x, simp_all add: x [unfolded validE_def])
apply (rule hoare_seq_ext[OF _ y[unfolded validE_def]])
apply (wpsimp wp: x[unfolded validE_def] split: sum.splits)
done

lemma assertE_sp:
Expand Down Expand Up @@ -256,12 +256,11 @@ lemma doesn't_grow_proof:
assumes x: "\<And>x. \<lbrace>\<lambda>s. x \<notin> S s \<and> P s\<rbrace> f \<lbrace>\<lambda>rv s. x \<notin> S s\<rbrace>"
shows "\<lbrace>\<lambda>s. card (S s) < n \<and> P s\<rbrace> f \<lbrace>\<lambda>rv s. card (S s) < n\<rbrace>"
apply (clarsimp simp: valid_def)
apply (subgoal_tac "S b \<subseteq> S s")
apply (drule card_mono [OF y], simp)
apply (erule le_less_trans[rotated])
apply (rule card_mono[OF y])
apply clarsimp
apply (rule ccontr)
apply (subgoal_tac "x \<notin> S b", simp)
apply (erule use_valid [OF _ x])
apply (drule (2) use_valid[OF _ x, OF _ conjI])
apply simp
done

Expand Down Expand Up @@ -297,13 +296,12 @@ lemma shrinks_proof:
assumes w: "\<And>s. P s \<Longrightarrow> x \<in> S s"
shows "\<lbrace>\<lambda>s. card (S s) \<le> n \<and> P s\<rbrace> f \<lbrace>\<lambda>rv s. card (S s) < n\<rbrace>"
apply (clarsimp simp: valid_def)
apply (subgoal_tac "S b \<subset> S s")
apply (drule psubset_card_mono [OF y], simp)
apply (erule less_le_trans[rotated])
apply (rule psubset_card_mono[OF y])
apply (rule psubsetI)
apply clarsimp
apply (rule ccontr)
apply (subgoal_tac "x \<notin> S b", simp)
apply (erule use_valid [OF _ x])
apply (drule (2) use_valid[OF _ x, OF _ conjI])
apply simp
by (metis use_valid w z)

Expand Down Expand Up @@ -393,13 +391,12 @@ lemma P_bool_lift:
assumes f: "\<lbrace>\<lambda>s. \<not>Q s\<rbrace> f \<lbrace>\<lambda>r s. \<not>Q s\<rbrace>"
shows "\<lbrace>\<lambda>s. P (Q s)\<rbrace> f \<lbrace>\<lambda>r s. P (Q s)\<rbrace>"
apply (clarsimp simp: valid_def)
apply (subgoal_tac "Q b = Q s")
apply simp
apply (rule back_subst[where P=P], assumption)
apply (rule iffI)
apply (rule classical)
apply (drule (1) use_valid [OF _ f])
apply simp
apply (erule (1) use_valid [OF _ t])
apply (erule (1) use_valid [OF _ t])
apply (rule classical)
apply (drule (1) use_valid [OF _ f])
apply simp
done

lemmas fail_inv = hoare_fail_any[where Q="\<lambda>_. P" and P=P for P]
Expand All @@ -416,11 +413,10 @@ lemma hoare_Ball_helper:
assumes y: "\<And>P. \<lbrace>\<lambda>s. P (S s)\<rbrace> f \<lbrace>\<lambda>rv s. P (S s)\<rbrace>"
shows "\<lbrace>\<lambda>s. \<forall>x \<in> S s. P x s\<rbrace> f \<lbrace>\<lambda>rv s. \<forall>x \<in> S s. Q x rv s\<rbrace>"
apply (clarsimp simp: valid_def)
apply (subgoal_tac "S b = S s")
apply (erule post_by_hoare2 [OF x])
apply (clarsimp simp: Ball_def)
apply (erule_tac P1="\<lambda>x. x = S s" in post_by_hoare2 [OF y])
apply (rule refl)
apply (drule bspec, erule back_subst[where P="\<lambda>A. x\<in>A" for x])
apply (erule post_by_hoare[OF y, rotated])
apply (rule refl)
apply (erule (1) post_by_hoare[OF x])
done

lemma handy_prop_divs:
Expand Down Expand Up @@ -479,14 +475,14 @@ lemma hoare_in_monad_post:
assumes x: "\<And>P. \<lbrace>P\<rbrace> f \<lbrace>\<lambda>x. P\<rbrace>"
shows "\<lbrace>\<top>\<rbrace> f \<lbrace>\<lambda>rv s. (rv, s) \<in> mres (f s)\<rbrace>"
apply (clarsimp simp: valid_def)
apply (subgoal_tac "s = b", simp)
apply (simp add: state_unchanged [OF x])
apply (rule back_subst[where P="\<lambda>s. x\<in>mres (f s)" for x], assumption)
apply (simp add: state_unchanged[OF x])
done

lemma list_case_throw_validE_R:
"\<lbrakk> \<And>y ys. xs = y # ys \<Longrightarrow> \<lbrace>P\<rbrace> f y ys \<lbrace>Q\<rbrace>,- \<rbrakk> \<Longrightarrow>
\<lbrace>P\<rbrace> case xs of [] \<Rightarrow> throwError e | x # xs \<Rightarrow> f x xs \<lbrace>Q\<rbrace>,-"
apply (case_tac xs, simp_all)
apply (cases xs, simp_all)
apply wp
done

Expand Down Expand Up @@ -522,13 +518,13 @@ lemma wp_split_const_if:
assumes x: "\<lbrace>P\<rbrace> f \<lbrace>Q\<rbrace>"
assumes y: "\<lbrace>P'\<rbrace> f \<lbrace>Q'\<rbrace>"
shows "\<lbrace>\<lambda>s. (G \<longrightarrow> P s) \<and> (\<not> G \<longrightarrow> P' s)\<rbrace> f \<lbrace>\<lambda>rv s. (G \<longrightarrow> Q rv s) \<and> (\<not> G \<longrightarrow> Q' rv s)\<rbrace>"
by (case_tac G, simp_all add: x y)
by (cases G, simp_all add: x y)

lemma wp_split_const_if_R:
assumes x: "\<lbrace>P\<rbrace> f \<lbrace>Q\<rbrace>,-"
assumes y: "\<lbrace>P'\<rbrace> f \<lbrace>Q'\<rbrace>,-"
shows "\<lbrace>\<lambda>s. (G \<longrightarrow> P s) \<and> (\<not> G \<longrightarrow> P' s)\<rbrace> f \<lbrace>\<lambda>rv s. (G \<longrightarrow> Q rv s) \<and> (\<not> G \<longrightarrow> Q' rv s)\<rbrace>,-"
by (case_tac G, simp_all add: x y)
by (cases G, simp_all add: x y)

lemma hoare_disj_division:
"\<lbrakk> P \<or> Q; P \<Longrightarrow> \<lbrace>R\<rbrace> f \<lbrace>S\<rbrace>; Q \<Longrightarrow> \<lbrace>T\<rbrace> f \<lbrace>S\<rbrace> \<rbrakk>
Expand Down Expand Up @@ -589,11 +585,12 @@ lemma univ_wp:
lemma univ_get_wp:
assumes x: "\<And>P. \<lbrace>P\<rbrace> f \<lbrace>\<lambda>rv. P\<rbrace>"
shows "\<lbrace>\<lambda>s. \<forall>(rv, s') \<in> mres (f s). s = s' \<longrightarrow> Q rv s'\<rbrace> f \<lbrace>Q\<rbrace>"
apply (rule hoare_pre_imp [OF _ univ_wp])
apply (rule hoare_pre_imp[OF _ univ_wp])
apply clarsimp
apply (drule bspec, assumption, simp)
apply (subgoal_tac "s = b", simp)
apply (simp add: state_unchanged [OF x])
apply (drule mp)
apply (simp add: state_unchanged[OF x])
apply simp
done

lemma other_hoare_in_monad_post:
Expand Down Expand Up @@ -630,10 +627,10 @@ lemma bindE_split_recursive_asm:
apply (clarsimp simp: validE_def valid_def bindE_def in_bind lift_def)
apply (erule allE, erule(1) impE)
apply (drule(1) bspec, simp)
apply (case_tac x, simp_all add: in_throwError)
apply (clarsimp simp: in_throwError split: sum.splits)
apply (drule x)
apply (clarsimp simp: validE_def valid_def)
apply (drule(1) bspec, simp)
apply (drule(1) bspec, simp split: sum.splits)
done

lemma validE_R_abstract_rv:
Expand Down Expand Up @@ -687,9 +684,8 @@ lemma valid_rv_split:
lemma hoare_rv_split:
"\<lbrakk>\<lbrace>P\<rbrace> f \<lbrace>\<lambda>rv s. rv \<longrightarrow> (Q rv s)\<rbrace>; \<lbrace>P\<rbrace> f \<lbrace>\<lambda>rv s. (\<not>rv) \<longrightarrow> (Q rv s)\<rbrace>\<rbrakk>
\<Longrightarrow> \<lbrace>P\<rbrace> f \<lbrace>Q\<rbrace>"
apply (clarsimp simp: valid_def)
apply (case_tac a, fastforce+)
done
apply (clarsimp simp: valid_def split_def)
by (metis (full_types) fst_eqD snd_conv)

lemma combine_validE:
"\<lbrakk> \<lbrace> P \<rbrace> x \<lbrace> Q \<rbrace>,\<lbrace> E \<rbrace>; \<lbrace> P' \<rbrace> x \<lbrace> Q' \<rbrace>,\<lbrace> E' \<rbrace> \<rbrakk>
Expand Down Expand Up @@ -718,23 +714,19 @@ lemma validE_pre_satisfies_post:

lemma hoare_validE_R_conjI:
"\<lbrakk> \<lbrace>P\<rbrace> f \<lbrace>Q\<rbrace>, - ; \<lbrace>P\<rbrace> f \<lbrace>Q'\<rbrace>, - \<rbrakk> \<Longrightarrow> \<lbrace>P\<rbrace> f \<lbrace>\<lambda>rv s. Q rv s \<and> Q' rv s\<rbrace>, -"
apply (clarsimp simp: Ball_def validE_R_def validE_def valid_def)
by (case_tac a; fastforce)
by (fastforce simp: Ball_def validE_R_def validE_def valid_def split: sum.splits)

lemma hoare_validE_E_conjI:
"\<lbrakk> \<lbrace>P\<rbrace> f -, \<lbrace>Q\<rbrace> ; \<lbrace>P\<rbrace> f -, \<lbrace>Q'\<rbrace> \<rbrakk> \<Longrightarrow> \<lbrace>P\<rbrace> f -, \<lbrace>\<lambda>rv s. Q rv s \<and> Q' rv s\<rbrace>"
apply (clarsimp simp: Ball_def validE_E_def validE_def valid_def)
by (case_tac a; fastforce)
by (fastforce simp: Ball_def validE_E_def validE_def valid_def split: sum.splits)

lemma validE_R_post_conjD1:
"\<lbrace>P\<rbrace> f \<lbrace>\<lambda>r s. Q r s \<and> R r s\<rbrace>,- \<Longrightarrow> \<lbrace>P\<rbrace> f \<lbrace>Q\<rbrace>,-"
apply (clarsimp simp: validE_R_def validE_def valid_def)
by (case_tac a; fastforce)
by (fastforce simp: validE_R_def validE_def valid_def split: sum.splits)

lemma validE_R_post_conjD2:
"\<lbrace>P\<rbrace> f \<lbrace>\<lambda>r s. Q r s \<and> R r s\<rbrace>,- \<Longrightarrow> \<lbrace>P\<rbrace> f \<lbrace>R\<rbrace>,-"
apply (clarsimp simp: validE_R_def validE_def valid_def)
by (case_tac a; fastforce)
by (fastforce simp: validE_R_def validE_def valid_def split: sum.splits)

lemma throw_opt_wp[wp]:
"\<lbrace>if v = None then E ex else Q (the v)\<rbrace> throw_opt ex v \<lbrace>Q\<rbrace>,\<lbrace>E\<rbrace>"
Expand Down
23 changes: 14 additions & 9 deletions lib/Monads/trace/Trace_RG.thy
Original file line number Diff line number Diff line change
Expand Up @@ -272,8 +272,8 @@ proof (induct n arbitrary: res)
case 0 then show ?case by auto
next
case (Suc n)
have drop_1: "\<And>tr res. (tr, res) \<in> f s \<Longrightarrow> \<exists>res'. (drop 1 tr, res') \<in> f s"
by (case_tac tr; fastforce dest: prefix_closedD[rotated] intro: Suc)
have drop_1: "(tr, res) \<in> f s \<Longrightarrow> \<exists>res'. (drop 1 tr, res') \<in> f s" for tr res
by (cases tr; fastforce dest: prefix_closedD[rotated] intro: Suc)
show ?case
using Suc.hyps[OF Suc.prems]
by (metis drop_1[simplified] drop_drop add_0 add_Suc)
Expand All @@ -291,7 +291,8 @@ lemma parallel_prefix_closed[wp_split]:
"\<lbrakk>prefix_closed f; prefix_closed g\<rbrakk>
\<Longrightarrow> prefix_closed (parallel f g)"
apply (subst prefix_closed_def, clarsimp simp: parallel_def)
apply (case_tac f_steps; clarsimp)
apply (subst (asm) zip.zip_Cons)
apply (clarsimp split: list.splits)
apply (drule(1) prefix_closedD)+
apply fastforce
done
Expand Down Expand Up @@ -338,7 +339,7 @@ lemma guar_cond_drop_Suc:
"\<lbrakk>guar_cond R s0 (drop (Suc n) xs);
fst (xs ! n) \<noteq> Env \<longrightarrow> R (last_st_tr (drop (Suc n) xs) s0) (snd (xs ! n))\<rbrakk>
\<Longrightarrow> guar_cond R s0 (drop n xs)"
by (case_tac "n < length xs"; simp add: guar_cond_drop_Suc_eq)
by (cases "n < length xs"; simp add: guar_cond_drop_Suc_eq)

lemma rely_cond_Cons_eq:
"rely_cond R s0 (x # xs)
Expand Down Expand Up @@ -427,8 +428,9 @@ proof -
hd_drop_conv_nth hd_append)
apply (fastforce simp: split_def intro!: nth_equalityI)
apply clarsimp
apply (erule_tac x=n in meta_allE)+
apply (drule meta_mp, erule rely_cond_is_drop, simp)
apply clarsimp
apply (erule meta_allE, drule meta_mp, assumption)+
apply (subst(asm) rely_cond_drop_Suc_eq[where xs="map f xs" for f xs], simp)
apply (clarsimp simp: last_st_tr_drop_map_zip_hd if_split[where P="\<lambda>x. x = Env"]
split_def)
Expand Down Expand Up @@ -493,7 +495,7 @@ lemma put_trace_res:
\<Longrightarrow> \<exists>n. tr = drop n xs \<and> n \<le> length xs
\<and> res = (case n of 0 \<Rightarrow> Result ((), s) | _ \<Rightarrow> Incomplete)"
apply (clarsimp simp: put_trace_eq_drop)
apply (case_tac n; auto intro: exI[where x=0])
apply (auto simp: gr0_conv_Suc intro: exI[where x=0])
done

lemma put_trace_twp[wp]:
Expand Down Expand Up @@ -732,13 +734,16 @@ lemmas modify_prefix_closed[simp] =
modify_wp[THEN valid_validI_wp[OF no_trace_all(3)], THEN validI_prefix_closed]
lemmas await_prefix_closed[simp] = Await_sync_twp[THEN validI_prefix_closed]

lemma repeat_n_prefix_closed[intro!]:
"prefix_closed f \<Longrightarrow> prefix_closed (repeat_n n f)"
apply (induct n; simp)
apply (auto intro: prefix_closed_bind)
done

lemma repeat_prefix_closed[intro!]:
"prefix_closed f \<Longrightarrow> prefix_closed (repeat f)"
apply (simp add: repeat_def)
apply (rule prefix_closed_bind; clarsimp)
apply (rename_tac n)
apply (induct_tac n; simp)
apply (auto intro: prefix_closed_bind)
done

lemma rely_cond_True[simp]:
Expand Down
2 changes: 1 addition & 1 deletion lib/Monads/trace/Trace_VCG.thy
Original file line number Diff line number Diff line change
Expand Up @@ -1016,7 +1016,7 @@ lemmas liftME_E_E_wp[wp_split] = validE_validE_E [OF liftME_wp, simplified, OF v
lemma assert_opt_wp:
"\<lbrace>\<lambda>s. x \<noteq> None \<longrightarrow> Q (the x) s\<rbrace> assert_opt x \<lbrace>Q\<rbrace>"
unfolding assert_opt_def
by (case_tac x; wpsimp wp: fail_wp return_wp)
by (cases x; wpsimp wp: fail_wp return_wp)

lemma gets_the_wp:
"\<lbrace>\<lambda>s. (f s \<noteq> None) \<longrightarrow> Q (the (f s)) s\<rbrace> gets_the f \<lbrace>Q\<rbrace>"
Expand Down
Loading

0 comments on commit f652ab3

Please sign in to comment.