Skip to content

Commit

Permalink
clib: improve ccorres_While
Browse files Browse the repository at this point in the history
Signed-off-by: Michael McInerney <[email protected]>
  • Loading branch information
michaelmcinerney committed Oct 17, 2023
1 parent 151cdf3 commit 94d38d0
Showing 1 changed file with 160 additions and 39 deletions.
199 changes: 160 additions & 39 deletions lib/clib/CCorresLemmas.thy
Original file line number Diff line number Diff line change
Expand Up @@ -1040,76 +1040,197 @@ lemma ccorres_Guard_True_Seq:
\<Longrightarrow> ccorres_underlying sr \<Gamma> r xf arrel axf A C hs a (Guard F \<lbrace>True\<rbrace> c ;; d)"
by (simp, ccorres_rewrite, assumption)

lemma ccorres_While_Normal_helper:
assumes setter_inv:
"\<Gamma> \<turnstile> {s'. \<exists>rv s. G rv s s'} setter {s'. \<exists>rv s. G rv s s' \<and> (cond_xf s' \<noteq> 0 \<longrightarrow> Cnd rv s s')}"
assumes body_inv: "\<Gamma> \<turnstile> {s'. \<exists>rv s. G rv s s' \<and> Cnd rv s s'} B {s'. \<exists>rv s. G rv s s'}"
shows "\<Gamma> \<turnstile> ({s'. \<exists>rv s. G rv s s' \<and> (cond_xf s' \<noteq> 0 \<longrightarrow> Cnd rv s s')})
While {s'. cond_xf s' \<noteq> 0} (Seq B setter)
{s'. \<exists>rv s. G rv s s'}"
apply (insert assms)
apply (rule hoare_complete)
apply (simp add: cvalid_def HoarePartialDef.valid_def)
apply (intro allI)
apply (rename_tac xstate xstate')
apply (rule impI)
apply (case_tac "\<not> isNormal xstate")
apply fastforce
apply (simp add: isNormal_def)
apply (elim exE)
apply (simp add: image_def)
apply (erule exec_While_final_inv''[where C="{s'. cond_xf s' \<noteq> 0}" and B="B;; setter"]; clarsimp)
apply (frule intermediate_Normal_state[OF _ _ body_inv])
apply fastforce
apply clarsimp
apply (rename_tac inter_t)
apply (frule hoarep_exec[OF _ _ body_inv, rotated], fastforce)
apply (frule_tac s=inter_t in hoarep_exec[rotated 2], fastforce+)[1]
apply (metis (mono_tags, lifting) HoarePartial.SeqSwap empty_iff exec_abrupt mem_Collect_eq)
apply (metis (mono_tags, lifting) HoarePartial.SeqSwap exec_stuck mem_Collect_eq)
apply (metis (mono_tags, lifting) HoarePartial.SeqSwap empty_iff exec_fault mem_Collect_eq)
done

lemma ccorres_While:
assumes body_ccorres:
"\<And>r. ccorresG srel \<Gamma> (=) xf (G and (\<lambda>s. the (C r s))) (G' \<inter> C') hs (B r) B'"
and cond_ccorres:
"\<And>r. ccorresG srel \<Gamma> (\<lambda>rv rv'. rv = to_bool rv') cond_xf G G' hs (gets_the (C r)) setter"
and nf: "\<And>r. no_fail (G and (\<lambda>s. the (C r s))) (B r)"
and no_ofail: "\<And>r. no_ofail G (C r)"
and body_inv: "\<And>r. \<lbrace>G and (\<lambda>s. the (C r s))\<rbrace> B r \<lbrace>\<lambda>_. G\<rbrace>"
"\<Gamma> \<turnstile> (G' \<inter> C') B' G'"
and setter_inv_cond: "\<Gamma> \<turnstile> G' setter (G' \<inter> {s'. cond_xf s' \<noteq> 0 \<longrightarrow> s' \<in> C'})"
and setter_xf_inv: "\<And>val. \<Gamma> \<turnstile> {s'. xf s' = val} setter {s'. xf s' = val}"
shows "ccorresG srel \<Gamma> (=) xf G (G' \<inter> {s'. xf s' = r}) hs
(whileLoop (\<lambda>r s. the (C r s)) B r)
(Seq setter (While {s'. cond_xf s' \<noteq> 0} (Seq B' setter)))"
"\<And>r. ccorresG srel \<Gamma> rrel xf (\<lambda>s. G r s \<and> C r s = Some True) (G' \<inter> C') [] (B r) B'"
assumes setter_ccorres:
"\<And>r. ccorresG srel \<Gamma> (\<lambda>rv rv'. rv = to_bool rv') cond_xf (G r) G' [] (gets_the (C r)) setter"
assumes nf: "\<And>r. no_fail (\<lambda>s. G r s \<and> C r s = Some True) (B r)"
assumes no_ofail: "\<And>r. no_ofail (G r) (C r)"
assumes body_inv:
"\<And>r. \<lbrace>\<lambda>s. G r s \<and> C r s = Some True\<rbrace> B r \<lbrace>G\<rbrace>"
"\<And>r s. \<Gamma> \<turnstile> {s'. s' \<in> G' \<and> (s, s') \<in> srel \<and> G r s \<and> rrel r (xf s')
\<and> s' \<in> C' \<and> C r s = Some True}
B' G'"
assumes setter_inv_cond:
"\<And>r s. \<Gamma> \<turnstile> {s'. s' \<in> G' \<and> (s, s') \<in> srel \<and> G r s \<and> rrel r (xf s')}
setter
{s'. s' \<in> G' \<and> (cond_xf s' \<noteq> 0 \<longrightarrow> s' \<in> C')}"
assumes setter_rrel:
"\<And>r s. \<Gamma> \<turnstile> {s'. s' \<in> G' \<and> (s, s') \<in> srel \<and> G r s \<and> rrel r (xf s')}
setter
{s'. rrel r (xf s')}"
shows
"ccorresG srel \<Gamma> rrel xf (G r) (G' \<inter> {s'. rrel r (xf s')}) hs
(whileLoop (\<lambda>r s. the (C r s)) B r)
(setter;; (While {s'. cond_xf s' \<noteq> 0} (B';; setter)))"
proof -
note unif_rrel_def[simp add] to_bool_def[simp add]
have helper:
"\<And>state xstate'.
\<Gamma> \<turnstile> \<langle>While {s'. cond_xf s' \<noteq> 0} (Seq B' setter), Normal state\<rangle> \<Rightarrow> xstate' \<Longrightarrow>
\<forall>st r s. Normal st = xstate' \<and> (s, state) \<in> srel
\<and> (cond_xf state \<noteq> 0) = the (C r s) \<and> xf state = r \<and> G s
\<and> state \<in> G' \<and> (cond_xf state \<noteq> 0 \<longrightarrow> state \<in> C')
\<and> (C r s \<noteq> None) \<and> (cond_xf state \<noteq> 0) = the (C r s)
\<and> rrel r (xf state) \<and> G r s \<and> state \<in> G' \<and> (cond_xf state \<noteq> 0 \<longrightarrow> state \<in> C')
\<longrightarrow> (\<exists>rv s'. (rv, s') \<in> fst (whileLoop (\<lambda>r s. the (C r s)) B r s)
\<and> (s', st) \<in> srel \<and> rv = xf st)"
apply (erule exec_While_final_inv''; simp)
\<and> (s', st) \<in> srel \<and> rrel rv (xf st))"
apply (erule_tac C="{s'. cond_xf s' \<noteq> 0}" in exec_While_final_inv''; simp)
apply (fastforce simp: whileLoop_cond_fail return_def)
apply clarsimp
apply (rename_tac t t' t'' s)
apply (frule intermediate_Normal_state[where P="G' \<inter> C'"])
apply (rename_tac t t' t'' r s y)
apply (frule_tac P="{s'. s' \<in> G' \<and> (s, s') \<in> srel \<and> G r s \<and> rrel r (xf s')
\<and> s' \<in> C' \<and> (C r s \<noteq> None) \<and> the (C r s)}"
in intermediate_Normal_state)
apply fastforce
apply (fastforce intro: body_inv)
apply (fastforce intro: body_inv conseqPre)
apply clarsimp
apply (rename_tac inter_t)
apply (prop_tac "\<exists>s'. (xf inter_t, s') \<in> fst (B (xf t) s) \<and> (s', inter_t) \<in> srel")
subgoal by (erule ccorresE[OF body_ccorres])
(fastforce simp: no_fail_def nf[simplified no_fail_def] dest: EHOther)+
apply (prop_tac "\<exists>rv' s'. rrel rv' (xf inter_t) \<and> (rv', s') \<in> fst (B r s)
\<and> (s', inter_t) \<in> srel")
apply (insert body_ccorres)[1]
apply (drule_tac x=r in meta_spec)
apply (erule (1) ccorresE)
apply fastforce
apply fastforce
using nf apply (fastforce simp: no_fail_def)
apply (fastforce dest!: EHOther)
apply fastforce
apply clarsimp
apply (prop_tac "G s'")
apply (prop_tac "G rv' s'")
apply (fastforce dest: use_valid intro: body_inv)
apply (prop_tac "inter_t \<in> G'")
apply (fastforce dest: hoarep_exec[rotated] intro: body_inv)
apply (drule_tac x=rv' in spec)
apply (drule_tac x=s' in spec)
apply (prop_tac "rrel rv' (xf inter_t)")
apply (fastforce dest: hoarep_exec[OF _ _ setter_rrel, rotated])
apply (elim impE)
apply (drule_tac s'=inter_t and r1="xf t'" in ccorresE_gets_the[OF cond_ccorres]; assumption?)
apply (frule_tac s'=inter_t and r1=rv' in ccorresE_gets_the[OF setter_ccorres]; assumption?)
apply (fastforce intro: no_ofail)
apply (fastforce dest: EHOther)
subgoal by (fastforce dest: hoarep_exec intro: setter_inv_cond)
apply (prop_tac "xf inter_t = xf t'")
apply (fastforce dest: hoarep_exec[rotated] intro: setter_xf_inv)
apply (intro conjI)
apply fastforce
using no_ofail apply (fastforce elim!: no_ofailD)
apply fastforce
apply (fastforce dest: hoarep_exec[OF _ _ setter_rrel, rotated])
apply (fastforce dest: hoarep_exec[OF _ _ setter_inv_cond, rotated])
apply (fastforce dest: hoarep_exec[OF _ _ setter_inv_cond, rotated])
apply (fastforce dest: hoarep_exec[OF _ _ setter_inv_cond, rotated])
apply (fastforce simp: whileLoop_def intro: whileLoop_results.intros(3))
done

have setter_hoarep:
"\<And>r s s' n xstate.
\<Gamma>\<turnstile>\<^sub>h \<langle>(setter;; While {s'. cond_xf s' \<noteq> 0} (B';; setter)) # hs,s'\<rangle> \<Rightarrow> (n, xstate)
\<Longrightarrow> \<Gamma>\<turnstile> {s' \<in> G'. (s, s') \<in> srel \<and> G r s \<and> rrel r (xf s')}
setter
{s'. (s' \<in> G' \<and> (s, s') \<in> srel \<and> G r s \<and> rrel r (xf s'))
\<and> (cond_xf s' \<noteq> 0 \<longrightarrow> (s' \<in> C' \<and> C r s = Some True))}"
apply (insert setter_ccorres)
apply (drule_tac x=r in meta_spec)
apply (frule_tac s=s in ccorres_to_vcg_gets_the)
apply (fastforce intro: no_ofail)
apply (insert setter_rrel)
apply (drule_tac x=s in meta_spec)
apply (drule_tac x=r in meta_spec)
apply (rule hoarep_conj_lift_pre_fix)
apply (rule hoarep_conj_lift_pre_fix)
apply (insert setter_inv_cond)[1]
apply (drule_tac x=s in meta_spec)
apply (drule_tac x=r in meta_spec)
apply (rule_tac Q'="{s' \<in> G'. cond_xf s' \<noteq> 0 \<longrightarrow> s' \<in> C'}" in conseqPost; fastforce)
apply (fastforce intro!: hoarep_conj_lift_pre_fix simp: Collect_mono conseq_under_new_pre)
apply (insert setter_inv_cond)
apply (drule_tac x=s in meta_spec)
apply (drule_tac x=r in meta_spec)
apply (simp add: imp_conjR)
apply (rule hoarep_conj_lift_pre_fix)
apply (simp add: Collect_mono conseq_under_new_pre)
apply (rule_tac Q'="{s'. C r s \<noteq> None \<and> the (C r s) = (cond_xf s' \<noteq> 0)}"
in conseqPost[rotated])
apply fastforce
apply fastforce
apply (simp add: Collect_mono conseq_under_new_pre)
done

show ?thesis
apply (clarsimp simp: ccorres_underlying_def)
apply (rename_tac s s' n xstate)
apply (frule (1) exec_handlers_use_hoare_nothrow_hoarep)
apply (rule_tac R="G' \<inter> {s'. s' \<in> {t. cond_xf t \<noteq> 0} \<longrightarrow> s' \<in> C'}" in HoarePartial.Seq)
apply (fastforce intro: setter_inv_cond)
apply (fastforce intro: While_inv_from_body_setter setter_inv_cond body_inv)
apply clarsimp
apply (frule (1) intermediate_Normal_state)
apply (fastforce intro: setter_inv_cond)
apply (frule_tac R'="{s'. s' \<in> G' \<and> (s, s') \<in> srel \<and> G r s \<and> rrel r (xf s')}"
and Q'="{s'. \<exists>rv s. s' \<in> G' \<and> (s, s') \<in> srel \<and> G rv s \<and> rrel rv (xf s')}"
in exec_handlers_use_hoare_nothrow_hoarep)
apply fastforce
apply (rule HoarePartial.Seq)
apply (erule setter_hoarep)
apply (rule conseqPre)
apply (rule ccorres_While_Normal_helper)
apply (fastforce intro!: setter_hoarep hoarep_ex_lift)
apply (intro hoarep_ex_pre, rename_tac rv new_s)
apply (insert setter_inv_cond)[1]
apply (drule_tac x=new_s in meta_spec)
apply (drule_tac x=rv in meta_spec)
apply (insert body_ccorres)[1]
apply (drule_tac x=rv in meta_spec)
apply (insert body_inv(2))[1]
apply (drule_tac x=new_s in meta_spec)
apply (drule_tac x=rv in meta_spec)
apply (frule_tac s=new_s in ccorres_to_vcg_with_prop)
using nf apply fastforce
using body_inv apply fastforce
apply (rule_tac Q'="{s'. s' \<in> G'
\<and> (\<exists>(rv, s) \<in>fst (B rv new_s). (s, s') \<in> srel \<and> rrel rv (xf s')
\<and> G rv s)}"
in conseqPost;
fastforce?)
apply (rule hoarep_conj_lift_pre_fix;
fastforce simp: Collect_mono conseq_under_new_pre)
apply fastforce
apply (case_tac xstate; clarsimp)
apply (frule intermediate_Normal_state[OF _ _ setter_hoarep]; assumption?)
apply fastforce
apply clarsimp
apply (rename_tac inter_t)
apply (drule (2) ccorresE_gets_the[OF cond_ccorres _ _ _ no_ofail])
apply (insert setter_ccorres)
apply (drule_tac x=r in meta_spec)
apply (drule (3) ccorresE_gets_the)
apply (fastforce intro: no_ofail)
apply (fastforce dest: EHOther)
apply (prop_tac "xf inter_t = xf s'")
apply (fastforce dest: hoarep_exec[rotated] intro: setter_xf_inv)
apply (clarsimp simp: isNormal_def)
apply (auto dest: hoarep_exec dest!: helper spec intro: setter_inv_cond)
apply (prop_tac "rrel r (xf inter_t)")
apply (fastforce dest: hoarep_exec[rotated] intro: setter_rrel)
apply (case_tac "\<not> the (C r s)")
apply (fastforce elim: exec_Normal_elim_cases simp: whileLoop_cond_fail return_def)
apply (insert no_ofail)
apply (fastforce dest!: helper hoarep_exec[OF _ _ setter_inv_cond, rotated] no_ofailD)
done
qed

Expand Down

0 comments on commit 94d38d0

Please sign in to comment.