forked from open-mmlab/OpenPCDet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dsvt_voxel.yaml
192 lines (156 loc) · 5.89 KB
/
dsvt_voxel.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
CLASS_NAMES: ['Vehicle', 'Pedestrian', 'Cyclist']
DATA_CONFIG:
_BASE_CONFIG_: cfgs/dataset_configs/waymo_dataset.yaml
SAMPLED_INTERVAL: {'train': 1, 'test': 1}
POINT_CLOUD_RANGE: [-74.88, -74.88, -2, 74.88, 74.88, 4.0]
POINTS_TANH_DIM: [3, 4]
DATA_AUGMENTOR:
DISABLE_AUG_LIST: ['placeholder']
AUG_CONFIG_LIST:
- NAME: gt_sampling
USE_ROAD_PLANE: False
DB_INFO_PATH:
- waymo_processed_data_v0_5_0_waymo_dbinfos_train_sampled_1.pkl
USE_SHARED_MEMORY: True # set it to True to speed up (it costs about 15GB shared memory)
DB_DATA_PATH:
- waymo_processed_data_v0_5_0_gt_database_train_sampled_1_global.npy
BACKUP_DB_INFO:
# if the above DB_INFO cannot be found, will use this backup one
DB_INFO_PATH: waymo_processed_data_v0_5_0_waymo_dbinfos_train_sampled_1_multiframe_-4_to_0.pkl
DB_DATA_PATH: waymo_processed_data_v0_5_0_gt_database_train_sampled_1_multiframe_-4_to_0_global.npy
NUM_POINT_FEATURES: 6
PREPARE: {
filter_by_min_points: ['Vehicle:5', 'Pedestrian:10', 'Cyclist:10'],
filter_by_difficulty: [-1],
}
SAMPLE_GROUPS: ['Vehicle:15', 'Pedestrian:10', 'Cyclist:10']
NUM_POINT_FEATURES: 5
REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
LIMIT_WHOLE_SCENE: True
- NAME: random_world_flip
ALONG_AXIS_LIST: ['x', 'y']
- NAME: random_world_rotation
WORLD_ROT_ANGLE: [-0.78539816, 0.78539816]
- NAME: random_world_scaling
WORLD_SCALE_RANGE: [0.95, 1.05]
- NAME: random_world_translation
NOISE_TRANSLATE_STD: [0.5, 0.5, 0.5]
DATA_PROCESSOR:
- NAME: mask_points_and_boxes_outside_range
REMOVE_OUTSIDE_BOXES: True
- NAME: shuffle_points
SHUFFLE_ENABLED: {
'train': True,
'test': True
}
- NAME: transform_points_to_voxels_placeholder
VOXEL_SIZE: [ 0.32, 0.32, 0.1875]
MODEL:
NAME: CenterPoint
VFE:
NAME: DynamicVoxelVFE
WITH_DISTANCE: False
USE_ABSLOTE_XYZ: True
USE_NORM: True
NUM_FILTERS: [ 192, 192 ]
BACKBONE_3D:
NAME: DSVT
INPUT_LAYER:
sparse_shape: [468, 468, 32]
downsample_stride: [[1, 1, 4], [1, 1, 4], [1, 1, 2]]
d_model: [192, 192, 192, 192]
set_info: [[48, 1], [48, 1], [48, 1], [48, 1]]
window_shape: [[12, 12, 32], [12, 12, 8], [12, 12, 2], [12, 12, 1]]
hybrid_factor: [2, 2, 1] # x, y, z
shifts_list: [[[0, 0, 0], [6, 6, 0]], [[0, 0, 0], [6, 6, 0]], [[0, 0, 0], [6, 6, 0]], [[0, 0, 0], [6, 6, 0]]]
normalize_pos: False
block_name: ['DSVTBlock','DSVTBlock','DSVTBlock','DSVTBlock']
set_info: [[48, 1], [48, 1], [48, 1], [48, 1]]
d_model: [192, 192, 192, 192]
nhead: [8, 8, 8, 8]
dim_feedforward: [384, 384, 384, 384]
dropout: 0.0
activation: gelu
reduction_type: 'attention'
output_shape: [468, 468]
conv_out_channel: 192
# You can enable torch.utils.checkpoint to save GPU memory
# USE_CHECKPOINT: True
MAP_TO_BEV:
NAME: PointPillarScatter3d
INPUT_SHAPE: [468, 468, 1]
NUM_BEV_FEATURES: 192
BACKBONE_2D:
NAME: BaseBEVResBackbone
LAYER_NUMS: [ 1, 2, 2 ]
LAYER_STRIDES: [ 1, 2, 2 ]
NUM_FILTERS: [ 128, 128, 256 ]
UPSAMPLE_STRIDES: [ 1, 2, 4 ]
NUM_UPSAMPLE_FILTERS: [ 128, 128, 128 ]
DENSE_HEAD:
NAME: CenterHead
CLASS_AGNOSTIC: False
CLASS_NAMES_EACH_HEAD: [
['Vehicle', 'Pedestrian', 'Cyclist']
]
SHARED_CONV_CHANNEL: 64
USE_BIAS_BEFORE_NORM: False
NUM_HM_CONV: 2
BN_EPS: 0.001
BN_MOM: 0.01
SEPARATE_HEAD_CFG:
HEAD_ORDER: ['center', 'center_z', 'dim', 'rot']
HEAD_DICT: {
'center': {'out_channels': 2, 'num_conv': 2},
'center_z': {'out_channels': 1, 'num_conv': 2},
'dim': {'out_channels': 3, 'num_conv': 2},
'rot': {'out_channels': 2, 'num_conv': 2},
'iou': {'out_channels': 1, 'num_conv': 2},
}
TARGET_ASSIGNER_CONFIG:
FEATURE_MAP_STRIDE: 1
NUM_MAX_OBJS: 500
GAUSSIAN_OVERLAP: 0.1
MIN_RADIUS: 2
IOU_REG_LOSS: True
LOSS_CONFIG:
LOSS_WEIGHTS: {
'cls_weight': 1.0,
'loc_weight': 2.0,
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
}
POST_PROCESSING:
SCORE_THRESH: 0.1
POST_CENTER_LIMIT_RANGE: [-80, -80, -10.0, 80, 80, 10.0]
MAX_OBJ_PER_SAMPLE: 500
USE_IOU_TO_RECTIFY_SCORE: True
IOU_RECTIFIER: [0.68, 0.71, 0.65]
NMS_CONFIG:
NMS_TYPE: class_specific_nms
NMS_THRESH: [0.75, 0.6, 0.55]
NMS_PRE_MAXSIZE: [4096, 4096, 4096]
NMS_POST_MAXSIZE: [500, 500, 500]
POST_PROCESSING:
RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
EVAL_METRIC: waymo
OPTIMIZATION:
BATCH_SIZE_PER_GPU: 3
NUM_EPOCHS: 24
OPTIMIZER: adam_onecycle
LR: 0.003
WEIGHT_DECAY: 0.05
MOMENTUM: 0.9
MOMS: [0.95, 0.85]
PCT_START: 0.1
DIV_FACTOR: 100
DECAY_STEP_LIST: [35, 45]
LR_DECAY: 0.1
LR_CLIP: 0.0000001
LR_WARMUP: False
WARMUP_EPOCH: 1
GRAD_NORM_CLIP: 10
LOSS_SCALE_FP16: 32.0
HOOK:
DisableAugmentationHook:
DISABLE_AUG_LIST: ['gt_sampling','random_world_flip','random_world_rotation','random_world_scaling', 'random_world_translation']
NUM_LAST_EPOCHS: 1