-
Notifications
You must be signed in to change notification settings - Fork 17
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #78 from nguyen-td/master
GUI update, PAC p-value plots
- Loading branch information
Showing
5 changed files
with
81 additions
and
45 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -17,11 +17,14 @@ | |
% 'TRDTF' : Time-reversed directed transfer entropy | ||
% 'MIM' : Multivariate Interaction Measure for each ROI | ||
% 'MIC' : Maximized Imaginary Coherency for each ROI | ||
% 'PAC' : Phase Amplitude Coupling for each ROI | ||
% 'freqrange' - [min max] frequency range or [integer] single frequency in Hz. Default is to plot broadband power. | ||
% 'alpha' - [integer] Significance level. Default is 0.05. | ||
% 'bispec' - ['b_anti'|'b_orig'] Option to compute antisymmetric or original bispectrum. | ||
% | ||
% Author: Franziska Pellegrini, [email protected] | ||
% Tien Dung Nguyen, [email protected] | ||
% Zixuan Liu, [email protected] | ||
|
||
function EEG = pop_roi_statsplot(EEG, varargin) | ||
|
||
|
@@ -39,36 +42,51 @@ | |
g = finputcheck(varargin, { | ||
'measure' 'string' { } ''; | ||
'freqrange' 'real' { } []; ... | ||
'alpha' 'integer' { } 0.05}, 'pop_roi_statsplot'); | ||
'alpha' 'integer' { } 0.05; ... | ||
'bispec' 'string' {'b_orig', 'b_anti'} 'b_anti'}, 'pop_roi_statsplot'); | ||
if ischar(g), error(g); end | ||
S = EEG.roi; | ||
|
||
% check if measure is defined. | ||
if isempty(g.measure) | ||
error('You must define a measure to plot'); | ||
end | ||
% extract frequency indices | ||
if ~isempty(g.freqrange) | ||
if length(g.freqrange) == 1 | ||
frq_inds = find(S.freqs == g.freqrange(1)); | ||
title = sprintf('%1.1f Hz', g.freqrange(1)); | ||
|
||
% adjust based on measure, PAC has one less dimension. | ||
if strcmp(g.measure, 'PAC') % check if measure is PAC | ||
% for PAC, check the bispectrum parameter | ||
if isfield(EEG.roi.(g.measure), g.bispec) | ||
matrix = EEG.roi.(g.measure).(g.bispec); % use specified bispectrum field | ||
else | ||
frq_inds = find(S.freqs >= g.freqrange(1) & S.freqs < g.freqrange(2)); | ||
title = sprintf('%1.1f-%1.1f Hz frequency band', g.freqrange(1), g.freqrange(2)); | ||
error(['The specified bispectrum field (' g.bispec ') does not exist in EEG.roi.']); | ||
end | ||
|
||
else | ||
frq_inds = 1:length(S.freqs); | ||
title = 'broadband'; | ||
end | ||
|
||
% select frequency or frequency band | ||
if length(frq_inds) > 1 | ||
matrix = squeeze(mean(S.(g.measure)(frq_inds, :, :, :))); | ||
else | ||
matrix = squeeze(S.(g.measure)(frq_inds, :, :, :)); | ||
end | ||
% if measure is not PAC, use the EEG.roi | ||
S = EEG.roi; | ||
|
||
% extract frequency indices | ||
if ~isempty(g.freqrange) | ||
if length(g.freqrange) == 1 | ||
frq_inds = find(S.freqs == g.freqrange(1)); | ||
title = sprintf('%1.1f Hz', g.freqrange(1)); | ||
else | ||
frq_inds = find(S.freqs >= g.freqrange(1) & S.freqs < g.freqrange(2)); | ||
title = sprintf('%1.1f-%1.1f Hz frequency band', g.freqrange(1), g.freqrange(2)); | ||
end | ||
else | ||
frq_inds = 1:length(S.freqs); | ||
title = 'broadband'; | ||
end | ||
|
||
% average over one dimension to obtain net FC, then generate p-values by comparing the true FC (first shuffle) to null distribution | ||
% select frequency or frequency band | ||
if length(frq_inds) > 1 | ||
matrix = squeeze(mean(S.(g.measure)(frq_inds, :, :, :))); | ||
else | ||
matrix = squeeze(S.(g.measure)(frq_inds, :, :, :)); | ||
end | ||
end | ||
|
||
% generate p-values by comparing the true FC (first shuffle) to null distribution | ||
netFC = squeeze(mean(matrix, 2)); | ||
FC_pn = sum(netFC(:, 1) < netFC(:, 2:end), 2)./(size(matrix, 3) - 1); | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters