-
Notifications
You must be signed in to change notification settings - Fork 0
/
custom_qa_pipeline.py
566 lines (484 loc) · 25.9 KB
/
custom_qa_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
__author__ = 'Connor Heaton'
"""
Adopted largely from HuggingFace QuestionAnsweringPipeline
"""
from collections.abc import Iterable
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
import numpy as np
from transformers.data import SquadExample, squad_convert_examples_to_features # SquadFeatures,
from transformers.file_utils import PaddingStrategy, add_end_docstrings, is_tf_available, is_torch_available
from transformers.modelcard import ModelCard
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.pipelines.base import PIPELINE_INIT_ARGS, ArgumentHandler, Pipeline
from transformers.tokenization_utils import BatchEncoding
if TYPE_CHECKING:
from transformers.modeling_tf_utils import TFPreTrainedModel
from transformers.modeling_utils import PreTrainedModel
if is_tf_available():
import tensorflow as tf
from transformers.models.auto.modeling_tf_auto import TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING
if is_torch_available():
import torch
from transformers.models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
class CustomSquadFeatures:
"""
Single squad example features to be fed to a model. Those features are model-specific and can be crafted from
:class:`~transformers.data.processors.squad.SquadExample` using the
:method:`~transformers.data.processors.squad.squad_convert_examples_to_features` method.
Args:
input_ids: Indices of input sequence tokens in the vocabulary.
attention_mask: Mask to avoid performing attention on padding token indices.
token_type_ids: Segment token indices to indicate first and second portions of the inputs.
cls_index: the index of the CLS token.
p_mask: Mask identifying tokens that can be answers vs. tokens that cannot.
Mask with 1 for tokens than cannot be in the answer and 0 for token that can be in an answer
example_index: the index of the example
unique_id: The unique Feature identifier
paragraph_len: The length of the context
token_is_max_context: List of booleans identifying which tokens have their maximum context in this feature object.
If a token does not have their maximum context in this feature object, it means that another feature object
has more information related to that token and should be prioritized over this feature for that token.
tokens: list of tokens corresponding to the input ids
token_to_orig_map: mapping between the tokens and the original text, needed in order to identify the answer.
start_position: start of the answer token index
end_position: end of the answer token index
encoding: optionally store the BatchEncoding with the fast-tokenizer alignment methods.
"""
def __init__(
self,
input_ids,
attention_mask,
token_type_ids,
cls_index,
p_mask,
example_index,
unique_id,
paragraph_len,
token_is_max_context,
tokens,
token_to_orig_map,
start_position,
end_position,
is_impossible,
qas_id: str = None,
encoding: BatchEncoding = None,
):
self.input_ids = input_ids
self.attention_mask = attention_mask
self.token_type_ids = token_type_ids
self.cls_index = cls_index
self.p_mask = p_mask
self.example_index = example_index
self.unique_id = unique_id
self.paragraph_len = paragraph_len
self.token_is_max_context = token_is_max_context
self.tokens = tokens
self.token_to_orig_map = token_to_orig_map
self.start_position = start_position
self.end_position = end_position
self.is_impossible = is_impossible
self.qas_id = qas_id
self.encoding = encoding
self.input_embds = None
class QuestionAnsweringArgumentHandler(ArgumentHandler):
"""
QuestionAnsweringPipeline requires the user to provide multiple arguments (i.e. question & context) to be mapped to
internal :class:`~transformers.SquadExample`.
QuestionAnsweringArgumentHandler manages all the possible to create a :class:`~transformers.SquadExample` from the
command-line supplied arguments.
"""
def normalize(self, item):
if isinstance(item, SquadExample):
return item
elif isinstance(item, dict):
for k in ["question", "context"]:
if k not in item:
raise KeyError("You need to provide a dictionary with keys {question:..., context:...}")
elif item[k] is None:
raise ValueError(f"`{k}` cannot be None")
elif isinstance(item[k], str) and len(item[k]) == 0:
raise ValueError(f"`{k}` cannot be empty")
return CustomQuestionAnsweringPipeline.create_sample(**item)
raise ValueError(f"{item} argument needs to be of type (SquadExample, dict)")
def __call__(self, *args, **kwargs):
# Detect where the actual inputs are
if args is not None and len(args) > 0:
if len(args) == 1:
inputs = args[0]
elif len(args) == 2 and {type(el) for el in args} == {str}:
inputs = [{"question": args[0], "context": args[1]}]
else:
inputs = list(args)
# Generic compatibility with sklearn and Keras
# Batched data
elif "X" in kwargs:
inputs = kwargs["X"]
elif "data" in kwargs:
inputs = kwargs["data"]
elif "question" in kwargs and "context" in kwargs:
if isinstance(kwargs["question"], list) and isinstance(kwargs["context"], str):
inputs = [{"question": Q, "context": kwargs["context"]} for Q in kwargs["question"]]
elif isinstance(kwargs["question"], list) and isinstance(kwargs["context"], list):
if len(kwargs["question"]) != len(kwargs["context"]):
raise ValueError("Questions and contexts don't have the same lengths")
inputs = [{"question": Q, "context": C} for Q, C in zip(kwargs["question"], kwargs["context"])]
elif isinstance(kwargs["question"], str) and isinstance(kwargs["context"], str):
inputs = [{"question": kwargs["question"], "context": kwargs["context"]}]
else:
raise ValueError("Arguments can't be understood")
else:
raise ValueError(f"Unknown arguments {kwargs}")
# Normalize inputs
if isinstance(inputs, dict):
inputs = [inputs]
elif isinstance(inputs, Iterable):
# Copy to avoid overriding arguments
inputs = [i for i in inputs]
else:
raise ValueError(f"Invalid arguments {kwargs}")
for i, item in enumerate(inputs):
inputs[i] = self.normalize(item)
return inputs
class CustomQuestionAnsweringPipeline(Pipeline):
"""
Question Answering pipeline using any :obj:`ModelForQuestionAnswering`. See the `question answering examples
<../task_summary.html#question-answering>`__ for more information.
This question answering pipeline can currently be loaded from :func:`~transformers.pipeline` using the following
task identifier: :obj:`"question-answering"`.
The models that this pipeline can use are models that have been fine-tuned on a question answering task. See the
up-to-date list of available models on `huggingface.co/models
<https://huggingface.co/models?filter=question-answering>`__.
"""
default_input_names = "question,context"
def __init__(
self,
model: Union["PreTrainedModel", "TFPreTrainedModel"],
tokenizer: PreTrainedTokenizer,
modelcard: Optional[ModelCard] = None,
framework: Optional[str] = None,
device: int = -1,
task: str = "",
**kwargs
):
super().__init__(
model=model,
tokenizer=tokenizer,
modelcard=modelcard,
framework=framework,
device=device,
task=task,
**kwargs,
)
self._args_parser = QuestionAnsweringArgumentHandler()
self.check_model_type(
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING if self.framework == "tf" else MODEL_FOR_QUESTION_ANSWERING_MAPPING
)
@staticmethod
def create_sample(
question: Union[str, List[str]], context: Union[str, List[str]]
) -> Union[SquadExample, List[SquadExample]]:
"""
QuestionAnsweringPipeline leverages the :class:`~transformers.SquadExample` internally. This helper method
encapsulate all the logic for converting question(s) and context(s) to :class:`~transformers.SquadExample`.
We currently support extractive question answering.
Arguments:
question (:obj:`str` or :obj:`List[str]`): The question(s) asked.
context (:obj:`str` or :obj:`List[str]`): The context(s) in which we will look for the answer.
Returns:
One or a list of :class:`~transformers.SquadExample`: The corresponding :class:`~transformers.SquadExample`
grouping question and context.
"""
if isinstance(question, list):
return [SquadExample(None, q, c, None, None, None) for q, c in zip(question, context)]
else:
return SquadExample(None, question, context, None, None, None)
def __call__(self, *args, **kwargs):
"""
ADDED TO kwargs -- _input_embds_
"""
# Set defaults values
kwargs.setdefault("padding", "longest")
kwargs.setdefault("topk", 1)
kwargs.setdefault("doc_stride", 128)
kwargs.setdefault("max_answer_len", 15)
kwargs.setdefault("max_seq_len", 384)
kwargs.setdefault("max_question_len", 64)
kwargs.setdefault("handle_impossible_answer", False)
# print('args: {}'.format(args))
# print('kwargs: {}'.format(kwargs))
# input_ids = kwargs['_input_ids_']
input_embds = kwargs['_input_embds_']
attention_mask = kwargs['_attention_mask_']
if kwargs["topk"] < 1:
raise ValueError(f"topk parameter should be >= 1 (got {kwargs['topk']})")
if kwargs["max_answer_len"] < 1:
raise ValueError(f"max_answer_len parameter should be >= 1 (got {(kwargs['max_answer_len'])}")
# Convert inputs to features
examples = self._args_parser(*args, **kwargs)
# input('examples: {}'.format(examples))
if not self.tokenizer.is_fast:
features_list = [
squad_convert_examples_to_features(
examples=[example],
tokenizer=self.tokenizer,
max_seq_length=kwargs["max_seq_len"],
doc_stride=kwargs["doc_stride"],
max_query_length=kwargs["max_question_len"],
padding_strategy=PaddingStrategy.MAX_LENGTH.value,
is_training=False,
tqdm_enabled=False,
)
for example in examples
]
else:
features_list = []
for example in examples:
print('example: {}'.format(example))
# Define the side we want to truncate / pad and the text/pair sorting
question_first = bool(self.tokenizer.padding_side == "right")
encoded_inputs = self.tokenizer(
text=example.question_text if question_first else example.context_text,
text_pair=example.context_text if question_first else example.question_text,
padding=kwargs["padding"],
truncation="only_second" if question_first else "only_first",
max_length=kwargs["max_seq_len"],
stride=kwargs["doc_stride"],
return_tensors="np",
return_token_type_ids=True,
return_overflowing_tokens=True,
return_offsets_mapping=True,
return_special_tokens_mask=True,
)
print('encoded_inputs:')
for k, v in encoded_inputs.items():
print('k: {} v: {}'.format(k, v.shape))
print("encoded_inputs['input_ids'][0, :]: {}".format(encoded_inputs['input_ids'][0, :]))
# print("encoded_inputs['input_ids'][-1, :]: {}".format(encoded_inputs['input_ids'][-1, :]))
input('okty')
# When the input is too long, it's converted in a batch of inputs with overflowing tokens
# and a stride of overlap between the inputs. If a batch of inputs is given, a special output
# "overflow_to_sample_mapping" indicate which member of the encoded batch belong to which original batch sample.
# Here we tokenize examples one-by-one so we don't need to use "overflow_to_sample_mapping".
# "num_span" is the number of output samples generated from the overflowing tokens.
num_spans = len(encoded_inputs["input_ids"])
# p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer)
# We put 0 on the tokens from the context and 1 everywhere else (question and special tokens)
p_mask = np.asarray(
[
[tok != 1 if question_first else 0 for tok in encoded_inputs.sequence_ids(span_id)]
for span_id in range(num_spans)
]
)
# keep the cls_token unmasked (some models use it to indicate unanswerable questions)
if self.tokenizer.cls_token_id is not None:
cls_index = np.nonzero(encoded_inputs["input_ids"] == self.tokenizer.cls_token_id)
p_mask[cls_index] = 0
features = []
for span_idx in range(num_spans):
features.append(
CustomSquadFeatures(
input_ids=encoded_inputs["input_ids"][span_idx],
attention_mask=encoded_inputs["attention_mask"][span_idx],
token_type_ids=encoded_inputs["token_type_ids"][span_idx],
p_mask=p_mask[span_idx].tolist(),
encoding=encoded_inputs[span_idx],
# We don't use the rest of the values - and actually
# for Fast tokenizer we could totally avoid using SquadFeatures and SquadExample
cls_index=None,
token_to_orig_map={},
example_index=0,
unique_id=0,
paragraph_len=0,
token_is_max_context=0,
tokens=[],
start_position=0,
end_position=0,
is_impossible=False,
qas_id=None,
)
)
features_list.append(features)
all_answers = []
for record_idx, (features, example) in enumerate(zip(features_list, examples)):
# Get model inputs, avoiding input_ids because we will swap in the input embeds
if input_embds is not None and attention_mask is not None:
model_input_names = [fname for fname in self.tokenizer.model_input_names if fname not in ['input_ids']]
fw_args = {k: [feature.__dict__[k] for feature in features] for k in model_input_names}
fw_args['attention_mask'] = attention_mask # add attn mask to inputs
if input_ids is not None: # if we have input_ids, take those. Otherwise, take embds
fw_args['input_ids'] = input_ids
else:
fw_args['inputs_embeds'] = input_embds # add embds to inputs
# print('fw_args: {}'.format(fw_args.keys()))
else:
model_input_names = self.tokenizer.model_input_names
fw_args = {k: [feature.__dict__[k] for feature in features] for k in model_input_names}
# Manage tensor allocation on correct device
with self.device_placement():
if self.framework == "tf":
fw_args = {k: tf.constant(v) for (k, v) in fw_args.items()}
start, end = self.model(fw_args)[:2]
start, end = start.numpy(), end.numpy()
else:
with torch.no_grad():
# Retrieve the score for the context tokens only (removing question tokens)
fw_args = {k: torch.tensor(v, device=self.device) for (k, v) in fw_args.items()}
# On Windows, the default int type in numpy is np.int32 so we get some non-long tensors.
fw_args = {k: v.long() if v.dtype == torch.int32 else v for (k, v) in fw_args.items()}
start, end = self.model(**fw_args)[:2]
start, end = start.cpu().numpy(), end.cpu().numpy()
min_null_score = 1000000 # large and positive
answers = []
for (feature, start_, end_) in zip(features, start, end):
# Ensure padded tokens & question tokens cannot belong to the set of candidate answers.
undesired_tokens = np.abs(np.array(feature.p_mask) - 1) & feature.attention_mask
# Generate mask
undesired_tokens_mask = undesired_tokens == 0.0
# Make sure non-context indexes in the tensor cannot contribute to the softmax
start_ = np.where(undesired_tokens_mask, -10000.0, start_)
end_ = np.where(undesired_tokens_mask, -10000.0, end_)
# Normalize logits and spans to retrieve the answer
start_ = np.exp(start_ - np.log(np.sum(np.exp(start_), axis=-1, keepdims=True)))
end_ = np.exp(end_ - np.log(np.sum(np.exp(end_), axis=-1, keepdims=True)))
if kwargs["handle_impossible_answer"]:
min_null_score = min(min_null_score, (start_[0] * end_[0]).item())
# Mask CLS
start_[0] = end_[0] = 0.0
starts, ends, scores = self.decode(
start_, end_, kwargs["topk"], kwargs["max_answer_len"], undesired_tokens
)
if not self.tokenizer.is_fast:
char_to_word = np.array(example.char_to_word_offset)
# Convert the answer (tokens) back to the original text
# Score: score from the model
# Start: Index of the first character of the answer in the context string
# End: Index of the character following the last character of the answer in the context string
# Answer: Plain text of the answer
answers += [
{
"score": score.item(),
"start": np.where(char_to_word == feature.token_to_orig_map[s])[0][0].item(),
"end": np.where(char_to_word == feature.token_to_orig_map[e])[0][-1].item(),
"answer": " ".join(
example.doc_tokens[feature.token_to_orig_map[s]: feature.token_to_orig_map[e] + 1]
),
}
for s, e, score in zip(starts, ends, scores)
]
else:
# Convert the answer (tokens) back to the original text
# Score: score from the model
# Start: Index of the first character of the answer in the context string
# End: Index of the character following the last character of the answer in the context string
# Answer: Plain text of the answer
question_first = bool(self.tokenizer.padding_side == "right")
enc = feature.encoding
# Sometimes the max probability token is in the middle of a word so:
# - we start by finding the right word containing the token with `token_to_word`
# - then we convert this word in a character span with `word_to_chars`
answers += [
{
"score": score.item(),
"start": enc.word_to_chars(
enc.token_to_word(s), sequence_index=1 if question_first else 0
)[0],
"end": enc.word_to_chars(enc.token_to_word(e), sequence_index=1 if question_first else 0)[
1
],
"answer": example.context_text[
enc.word_to_chars(enc.token_to_word(s),
sequence_index=1 if question_first else 0)[
0
]:enc.word_to_chars(enc.token_to_word(e),
sequence_index=1 if question_first else 0)[
1
]
],
}
for s, e, score in zip(starts, ends, scores)
]
if kwargs["handle_impossible_answer"]:
answers.append({"score": min_null_score, "start": 0, "end": 0, "answer": ""})
answers = [ans if ans['answer'].strip() != '' else {'score': -100, 'start': 0, 'end': 0, 'answer': ''} for ans in answers]
# for answer in answers:
# print('start: {} end: {} score: {} answer: {}'.format(answer['start'], answer['end'],
# answer['score'], answer['answer']))
# input('okty')
answers = sorted(answers, key=lambda x: x["score"], reverse=True)[: kwargs["topk"]]
all_answers += answers
if len(all_answers) == 1:
return all_answers[0]
return all_answers
def decode(
self, start: np.ndarray, end: np.ndarray, topk: int, max_answer_len: int, undesired_tokens: np.ndarray
) -> Tuple:
"""
Take the output of any :obj:`ModelForQuestionAnswering` and will generate probabilities for each span to be the
actual answer.
In addition, it filters out some unwanted/impossible cases like answer len being greater than max_answer_len or
answer end position being before the starting position. The method supports output the k-best answer through
the topk argument.
Args:
start (:obj:`np.ndarray`): Individual start probabilities for each token.
end (:obj:`np.ndarray`): Individual end probabilities for each token.
topk (:obj:`int`): Indicates how many possible answer span(s) to extract from the model output.
max_answer_len (:obj:`int`): Maximum size of the answer to extract from the model's output.
undesired_tokens (:obj:`np.ndarray`): Mask determining tokens that can be part of the answer
"""
# Ensure we have batch axis
if start.ndim == 1:
start = start[None]
if end.ndim == 1:
end = end[None]
# Compute the score of each tuple(start, end) to be the real answer
outer = np.matmul(np.expand_dims(start, -1), np.expand_dims(end, 1))
# Remove candidate with end < start and end - start > max_answer_len
candidates = np.tril(np.triu(outer), max_answer_len - 1)
# Inspired by Chen & al. (https://github.com/facebookresearch/DrQA)
scores_flat = candidates.flatten()
if topk == 1:
idx_sort = [np.argmax(scores_flat)]
elif len(scores_flat) < topk:
idx_sort = np.argsort(-scores_flat)
else:
idx = np.argpartition(-scores_flat, topk)[0:topk]
idx_sort = idx[np.argsort(-scores_flat[idx])]
starts, ends = np.unravel_index(idx_sort, candidates.shape)[1:]
desired_spans = np.isin(starts, undesired_tokens.nonzero()) & np.isin(ends, undesired_tokens.nonzero())
starts = starts[desired_spans]
ends = ends[desired_spans]
scores = candidates[0, starts, ends]
return starts, ends, scores
def span_to_answer(self, text: str, start: int, end: int) -> Dict[str, Union[str, int]]:
"""
When decoding from token probabilities, this method maps token indexes to actual word in the initial context.
Args:
text (:obj:`str`): The actual context to extract the answer from.
start (:obj:`int`): The answer starting token index.
end (:obj:`int`): The answer end token index.
Returns:
Dictionary like :obj:`{'answer': str, 'start': int, 'end': int}`
"""
words = []
token_idx = char_start_idx = char_end_idx = chars_idx = 0
for i, word in enumerate(text.split(" ")):
token = self.tokenizer.tokenize(word)
# Append words if they are in the span
if start <= token_idx <= end:
if token_idx == start:
char_start_idx = chars_idx
if token_idx == end:
char_end_idx = chars_idx + len(word)
words += [word]
# Stop if we went over the end of the answer
if token_idx > end:
break
# Append the subtokenization length to the running index
token_idx += len(token)
chars_idx += len(word) + 1
# Join text with spaces
return {
"answer": " ".join(words),
"start": max(0, char_start_idx),
"end": min(len(text), char_end_idx),
}